Cargando…
Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model
Protein palmitoylation and depalmitoylation alter protein function. This post-translational modification is critical for synaptic transmission and plasticity. Mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) causes infantile neuronal ceroid lipofuscinosis (CLN1), a ped...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464704/ https://www.ncbi.nlm.nih.gov/pubmed/30946007 http://dx.doi.org/10.7554/eLife.40316 |
_version_ | 1783410880385384448 |
---|---|
author | Koster, Kevin P Francesconi, Walter Berton, Fulvia Alahmadi, Sami Srinivas, Roshan Yoshii, Akira |
author_facet | Koster, Kevin P Francesconi, Walter Berton, Fulvia Alahmadi, Sami Srinivas, Roshan Yoshii, Akira |
author_sort | Koster, Kevin P |
collection | PubMed |
description | Protein palmitoylation and depalmitoylation alter protein function. This post-translational modification is critical for synaptic transmission and plasticity. Mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) causes infantile neuronal ceroid lipofuscinosis (CLN1), a pediatric neurodegenerative disease. However, the role of protein depalmitoylation in synaptic maturation is unknown. Therefore, we studied synapse development in Ppt1(-/-) mouse visual cortex. We demonstrate that the developmental N-methyl-D-aspartate receptor (NMDAR) subunit switch from GluN2B to GluN2A is stagnated in Ppt1(-/-) mice. Correspondingly, Ppt1(-/-) neurons exhibit immature evoked NMDAR currents and dendritic spine morphology in vivo. Further, dissociated Ppt1(-/-) cultured neurons show extrasynaptic, diffuse calcium influxes and enhanced vulnerability to NMDA-induced excitotoxicity, reflecting the predominance of GluN2B-containing receptors. Remarkably, Ppt1(-/-) neurons demonstrate hyperpalmitoylation of GluN2B as well as Fyn kinase, which regulates surface retention of GluN2B. Thus, PPT1 plays a critical role in postsynapse maturation by facilitating the GluN2 subunit switch and proteostasis of palmitoylated proteins. |
format | Online Article Text |
id | pubmed-6464704 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-64647042019-04-17 Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model Koster, Kevin P Francesconi, Walter Berton, Fulvia Alahmadi, Sami Srinivas, Roshan Yoshii, Akira eLife Neuroscience Protein palmitoylation and depalmitoylation alter protein function. This post-translational modification is critical for synaptic transmission and plasticity. Mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) causes infantile neuronal ceroid lipofuscinosis (CLN1), a pediatric neurodegenerative disease. However, the role of protein depalmitoylation in synaptic maturation is unknown. Therefore, we studied synapse development in Ppt1(-/-) mouse visual cortex. We demonstrate that the developmental N-methyl-D-aspartate receptor (NMDAR) subunit switch from GluN2B to GluN2A is stagnated in Ppt1(-/-) mice. Correspondingly, Ppt1(-/-) neurons exhibit immature evoked NMDAR currents and dendritic spine morphology in vivo. Further, dissociated Ppt1(-/-) cultured neurons show extrasynaptic, diffuse calcium influxes and enhanced vulnerability to NMDA-induced excitotoxicity, reflecting the predominance of GluN2B-containing receptors. Remarkably, Ppt1(-/-) neurons demonstrate hyperpalmitoylation of GluN2B as well as Fyn kinase, which regulates surface retention of GluN2B. Thus, PPT1 plays a critical role in postsynapse maturation by facilitating the GluN2 subunit switch and proteostasis of palmitoylated proteins. eLife Sciences Publications, Ltd 2019-04-04 /pmc/articles/PMC6464704/ /pubmed/30946007 http://dx.doi.org/10.7554/eLife.40316 Text en © 2019, Koster et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Koster, Kevin P Francesconi, Walter Berton, Fulvia Alahmadi, Sami Srinivas, Roshan Yoshii, Akira Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model |
title | Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model |
title_full | Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model |
title_fullStr | Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model |
title_full_unstemmed | Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model |
title_short | Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model |
title_sort | developmental nmda receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464704/ https://www.ncbi.nlm.nih.gov/pubmed/30946007 http://dx.doi.org/10.7554/eLife.40316 |
work_keys_str_mv | AT kosterkevinp developmentalnmdareceptordysregulationintheinfantileneuronalceroidlipofuscinosismousemodel AT francesconiwalter developmentalnmdareceptordysregulationintheinfantileneuronalceroidlipofuscinosismousemodel AT bertonfulvia developmentalnmdareceptordysregulationintheinfantileneuronalceroidlipofuscinosismousemodel AT alahmadisami developmentalnmdareceptordysregulationintheinfantileneuronalceroidlipofuscinosismousemodel AT srinivasroshan developmentalnmdareceptordysregulationintheinfantileneuronalceroidlipofuscinosismousemodel AT yoshiiakira developmentalnmdareceptordysregulationintheinfantileneuronalceroidlipofuscinosismousemodel |