Cargando…
Dysregulation of Neuronal Gαo Signaling by Graphene Oxide in Nematode Caenorhabditis elegans
Exposure to graphene oxide (GO) induced some dysregulated microRNAs (miRNAs), such as the increase in mir-247, in nematode Caenorhabditis elegans. We here further identified goa-1 encoding a Gαo and pkc-1 encoding a serine/threonine protein kinase as the targets of neuronal mir-247 in the regulation...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6465305/ https://www.ncbi.nlm.nih.gov/pubmed/30988375 http://dx.doi.org/10.1038/s41598-019-42603-1 |
Sumario: | Exposure to graphene oxide (GO) induced some dysregulated microRNAs (miRNAs), such as the increase in mir-247, in nematode Caenorhabditis elegans. We here further identified goa-1 encoding a Gαo and pkc-1 encoding a serine/threonine protein kinase as the targets of neuronal mir-247 in the regulation of GO toxicity. GO exposure increased the expressions of both GOA-1 and PKC-1. Mutation of goa-1 or pkc-1 induced a susceptibility to GO toxicity, and suppressed the resistance of mir-247 mutant to GO toxicity. GOA-1 and PKC-1 could also act in the neurons to regulate the GO toxicity, and neuronal overexpression of mir-247 could not affect the resistance of nematodes overexpressing neuronal goa-1 or pkc-1 lacking 3′-UTR to GO toxicity. In the neurons, GOA-1 acted upstream of diacylglycerol kinase/DGK-1 and PKC-1 to regulate the GO toxicity. Moreover, DGK-1 and GOA-1 functioned synergistically in the regulation of GO toxicity. Our results highlight the crucial role of neuronal Gαo signaling in response to GO in nematodes. |
---|