Cargando…

Liver Injury Induced by Carbon Tetrachloride in Mice Is Prevented by the Antioxidant Capacity of Anji White Tea Polyphenols

Anji white tea is a unique variety of green tea that is rich in polyphenols. In this study, the effect of Anji white tea polyphenols (AJWTP) on the prevention of carbon tetrachloride (CCl(4))-induced liver injury through its antioxidant properties was studied. Biochemical and molecular biology metho...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ranran, Yang, Zhiqing, Zhang, Jing, Mu, Jianfei, Zhou, Xianrong, Zhao, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466528/
https://www.ncbi.nlm.nih.gov/pubmed/30875793
http://dx.doi.org/10.3390/antiox8030064
Descripción
Sumario:Anji white tea is a unique variety of green tea that is rich in polyphenols. In this study, the effect of Anji white tea polyphenols (AJWTP) on the prevention of carbon tetrachloride (CCl(4))-induced liver injury through its antioxidant properties was studied. Biochemical and molecular biology methods were used to analyze the serum and liver tissue of mice. The antioxidant capacity and liver injury preventive effect of AJWTP were determined, and the mechanism was elaborated. The results showed that AJWTP decreased the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), and total cholesterol (TC) in mice with liver injury, it increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the serum and liver tissue of mice with liver injury, and it also decreased the amount of malondialdehyde (MDA). Further quantitative polymerase chain reaction (qPCR) results showed that AJWTP upregulated the mRNA expression of Cu/Zn-SOD, Mn-SOD, catalase (CAT), and nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor alpha (IκB-α) and downregulated the expression of nuclear factor κ-light-chain-enhancer of activated B-cells (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) in the liver tissue of mice with liver injury. Therefore, AJWTP produces sufficient antioxidant action to prevent liver injury, and the effect increases with the increase in AJWTP concentration. The effect of 200 mg/kg AJWTP was similar to that of the same concentration of the drug (silymarin) used for the treatment of liver injury. This indicates excellent potential for the development and utilization of AJWTP because it is an active substance with excellent antioxidant effects and can prevent liver injury.