Cargando…

CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling

CRISPR/Cas9 has revolutionized cancer mouse models. Although loss-of-function genetics by CRISPR/Cas9 is well-established, generating gain-of-function alleles in somatic cancer models is still challenging because of the low efficiency of gene knock-in. Here we developed CRISPR-based Somatic Oncogene...

Descripción completa

Detalles Bibliográficos
Autores principales: Mou, Haiwei, Ozata, Deniz M., Smith, Jordan L., Sheel, Ankur, Kwan, Suet-Yan, Hough, Soren, Kucukural, Alper, Kennedy, Zachary, Cao, Yueying, Xue, Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466773/
https://www.ncbi.nlm.nih.gov/pubmed/30987660
http://dx.doi.org/10.1186/s13073-019-0627-9
_version_ 1783411172727324672
author Mou, Haiwei
Ozata, Deniz M.
Smith, Jordan L.
Sheel, Ankur
Kwan, Suet-Yan
Hough, Soren
Kucukural, Alper
Kennedy, Zachary
Cao, Yueying
Xue, Wen
author_facet Mou, Haiwei
Ozata, Deniz M.
Smith, Jordan L.
Sheel, Ankur
Kwan, Suet-Yan
Hough, Soren
Kucukural, Alper
Kennedy, Zachary
Cao, Yueying
Xue, Wen
author_sort Mou, Haiwei
collection PubMed
description CRISPR/Cas9 has revolutionized cancer mouse models. Although loss-of-function genetics by CRISPR/Cas9 is well-established, generating gain-of-function alleles in somatic cancer models is still challenging because of the low efficiency of gene knock-in. Here we developed CRISPR-based Somatic Oncogene kNock-In for Cancer Modeling (CRISPR-SONIC), a method for rapid in vivo cancer modeling using homology-independent repair to integrate oncogenes at a targeted genomic locus. Using a dual guide RNA strategy, we integrated a plasmid donor in the 3′-UTR of mouse β-actin, allowing co-expression of reporter genes or oncogenes from the β-actin promoter. We showed that knock-in of oncogenic Ras and loss of p53 efficiently induced intrahepatic cholangiocarcinoma in mice. Further, our strategy can generate bioluminescent liver cancer to facilitate tumor imaging. This method simplifies in vivo gain-of-function genetics by facilitating targeted integration of oncogenes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13073-019-0627-9) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6466773
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-64667732019-04-22 CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling Mou, Haiwei Ozata, Deniz M. Smith, Jordan L. Sheel, Ankur Kwan, Suet-Yan Hough, Soren Kucukural, Alper Kennedy, Zachary Cao, Yueying Xue, Wen Genome Med Method CRISPR/Cas9 has revolutionized cancer mouse models. Although loss-of-function genetics by CRISPR/Cas9 is well-established, generating gain-of-function alleles in somatic cancer models is still challenging because of the low efficiency of gene knock-in. Here we developed CRISPR-based Somatic Oncogene kNock-In for Cancer Modeling (CRISPR-SONIC), a method for rapid in vivo cancer modeling using homology-independent repair to integrate oncogenes at a targeted genomic locus. Using a dual guide RNA strategy, we integrated a plasmid donor in the 3′-UTR of mouse β-actin, allowing co-expression of reporter genes or oncogenes from the β-actin promoter. We showed that knock-in of oncogenic Ras and loss of p53 efficiently induced intrahepatic cholangiocarcinoma in mice. Further, our strategy can generate bioluminescent liver cancer to facilitate tumor imaging. This method simplifies in vivo gain-of-function genetics by facilitating targeted integration of oncogenes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13073-019-0627-9) contains supplementary material, which is available to authorized users. BioMed Central 2019-04-16 /pmc/articles/PMC6466773/ /pubmed/30987660 http://dx.doi.org/10.1186/s13073-019-0627-9 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Method
Mou, Haiwei
Ozata, Deniz M.
Smith, Jordan L.
Sheel, Ankur
Kwan, Suet-Yan
Hough, Soren
Kucukural, Alper
Kennedy, Zachary
Cao, Yueying
Xue, Wen
CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling
title CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling
title_full CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling
title_fullStr CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling
title_full_unstemmed CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling
title_short CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling
title_sort crispr-sonic: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466773/
https://www.ncbi.nlm.nih.gov/pubmed/30987660
http://dx.doi.org/10.1186/s13073-019-0627-9
work_keys_str_mv AT mouhaiwei crisprsonictargetedsomaticoncogeneknockinenablesrapidinvivocancermodeling
AT ozatadenizm crisprsonictargetedsomaticoncogeneknockinenablesrapidinvivocancermodeling
AT smithjordanl crisprsonictargetedsomaticoncogeneknockinenablesrapidinvivocancermodeling
AT sheelankur crisprsonictargetedsomaticoncogeneknockinenablesrapidinvivocancermodeling
AT kwansuetyan crisprsonictargetedsomaticoncogeneknockinenablesrapidinvivocancermodeling
AT houghsoren crisprsonictargetedsomaticoncogeneknockinenablesrapidinvivocancermodeling
AT kucukuralalper crisprsonictargetedsomaticoncogeneknockinenablesrapidinvivocancermodeling
AT kennedyzachary crisprsonictargetedsomaticoncogeneknockinenablesrapidinvivocancermodeling
AT caoyueying crisprsonictargetedsomaticoncogeneknockinenablesrapidinvivocancermodeling
AT xuewen crisprsonictargetedsomaticoncogeneknockinenablesrapidinvivocancermodeling