Cargando…
A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems
The development of portable volatile organic compound (VOC) sensors is essential for home healthcare and workplace safety because VOCs are environmental pollutants that may critically affect human health. Here, we report a compact and portable sensor platform based on a capacitive micromachined ultr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470568/ https://www.ncbi.nlm.nih.gov/pubmed/30901963 http://dx.doi.org/10.3390/s19061401 |
_version_ | 1783411827360661504 |
---|---|
author | Yoon, Inug Eom, Gayoung Lee, Sungwoo Kim, Bo Kyeong Kim, Sang Kyung Lee, Hyunjoo J. |
author_facet | Yoon, Inug Eom, Gayoung Lee, Sungwoo Kim, Bo Kyeong Kim, Sang Kyung Lee, Hyunjoo J. |
author_sort | Yoon, Inug |
collection | PubMed |
description | The development of portable volatile organic compound (VOC) sensors is essential for home healthcare and workplace safety because VOCs are environmental pollutants that may critically affect human health. Here, we report a compact and portable sensor platform based on a capacitive micromachined ultrasonic transducer (CMUT) array offering multiplex detection of various VOCs (toluene, acetone, ethanol, and methanol) using a single read-out system. Three CMUT resonant devices were functionalized with three different layers: (1) phenyl-selective peptide, (2) colloids of single-walled nanotubes and peptide, and (3) poly(styrene-co-allyl alcohol). As each device exhibited different sensitivities to the four VOCs, we performed principal component analysis to achieve selective detection of all four gases. For the simultaneous detection of VOCs using CMUT sensors, the changes in the resonant frequencies of three devices were monitored in real time, but using only a single oscillator through an electrically controlled relay to achieve compactness. In addition, by devising a wireless system, measurement results were transmitted to a smartphone to monitor the concentration of VOCs. We used multiple sensors to obtain a larger number of fingerprints for pattern recognition to enhance selectivity but interfaced these sensors with a single read-out circuit to minimize the footprint of the overall system. The compact CMUT-based sensor array based on a multiplex detection scheme is a promising sensor platform for portable VOC monitoring. |
format | Online Article Text |
id | pubmed-6470568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64705682019-04-26 A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems Yoon, Inug Eom, Gayoung Lee, Sungwoo Kim, Bo Kyeong Kim, Sang Kyung Lee, Hyunjoo J. Sensors (Basel) Article The development of portable volatile organic compound (VOC) sensors is essential for home healthcare and workplace safety because VOCs are environmental pollutants that may critically affect human health. Here, we report a compact and portable sensor platform based on a capacitive micromachined ultrasonic transducer (CMUT) array offering multiplex detection of various VOCs (toluene, acetone, ethanol, and methanol) using a single read-out system. Three CMUT resonant devices were functionalized with three different layers: (1) phenyl-selective peptide, (2) colloids of single-walled nanotubes and peptide, and (3) poly(styrene-co-allyl alcohol). As each device exhibited different sensitivities to the four VOCs, we performed principal component analysis to achieve selective detection of all four gases. For the simultaneous detection of VOCs using CMUT sensors, the changes in the resonant frequencies of three devices were monitored in real time, but using only a single oscillator through an electrically controlled relay to achieve compactness. In addition, by devising a wireless system, measurement results were transmitted to a smartphone to monitor the concentration of VOCs. We used multiple sensors to obtain a larger number of fingerprints for pattern recognition to enhance selectivity but interfaced these sensors with a single read-out circuit to minimize the footprint of the overall system. The compact CMUT-based sensor array based on a multiplex detection scheme is a promising sensor platform for portable VOC monitoring. MDPI 2019-03-21 /pmc/articles/PMC6470568/ /pubmed/30901963 http://dx.doi.org/10.3390/s19061401 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yoon, Inug Eom, Gayoung Lee, Sungwoo Kim, Bo Kyeong Kim, Sang Kyung Lee, Hyunjoo J. A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems |
title | A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems |
title_full | A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems |
title_fullStr | A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems |
title_full_unstemmed | A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems |
title_short | A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems |
title_sort | capacitive micromachined ultrasonic transducer-based resonant sensor array for portable volatile organic compound detection with wireless systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470568/ https://www.ncbi.nlm.nih.gov/pubmed/30901963 http://dx.doi.org/10.3390/s19061401 |
work_keys_str_mv | AT yooninug acapacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT eomgayoung acapacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT leesungwoo acapacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT kimbokyeong acapacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT kimsangkyung acapacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT leehyunjooj acapacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT yooninug capacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT eomgayoung capacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT leesungwoo capacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT kimbokyeong capacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT kimsangkyung capacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems AT leehyunjooj capacitivemicromachinedultrasonictransducerbasedresonantsensorarrayforportablevolatileorganiccompounddetectionwithwirelesssystems |