Cargando…
One-Stage Multi-Sensor Data Fusion Convolutional Neural Network for 3D Object Detection
Three-dimensional (3D) object detection has important applications in robotics, automatic loading, automatic driving and other scenarios. With the improvement of devices, people can collect multi-sensor/multimodal data from a variety of sensors such as Lidar and cameras. In order to make full use of...
Autores principales: | Li, Minle, Hu, Yihua, Zhao, Nanxiang, Qian, Qishu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471046/ https://www.ncbi.nlm.nih.gov/pubmed/30909582 http://dx.doi.org/10.3390/s19061434 |
Ejemplares similares
-
IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion
por: Dehzangi, Omid, et al.
Publicado: (2017) -
Evolutionary Multi-Objective One-Shot Filter Pruning for Designing Lightweight Convolutional Neural Network
por: Wu, Tao, et al.
Publicado: (2021) -
Multi-Sensor and Decision-Level Fusion-Based Structural Damage Detection Using a One-Dimensional Convolutional Neural Network
por: Teng, Shuai, et al.
Publicado: (2021) -
Human Fall Detection Using 3D Multi-Stream Convolutional Neural Networks with Fusion
por: Alanazi, Thamer, et al.
Publicado: (2022) -
Drivers’ Mental Engagement Analysis Using Multi-Sensor Fusion Approaches Based on Deep Convolutional Neural Networks
por: Aminosharieh Najafi, Taraneh, et al.
Publicado: (2023)