Cargando…

Influence of 2‐Methoxyestradiol and Sex on Hypoxia‐Induced Pulmonary Hypertension and Hypoxia‐Inducible Factor‐1‐α

BACKGROUND: Women are at greater risk of developing pulmonary arterial hypertension, with estrogen and its downstream metabolites playing a potential role in the pathogenesis of the disease. Hypoxia‐inducible factor‐1‐α (HIF1α) is a pro‐proliferative mediator and may be involved in the development o...

Descripción completa

Detalles Bibliográficos
Autores principales: Docherty, Craig K., Nilsen, Margaret, MacLean, Margaret R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474940/
https://www.ncbi.nlm.nih.gov/pubmed/30819028
http://dx.doi.org/10.1161/JAHA.118.011628
_version_ 1783412686224097280
author Docherty, Craig K.
Nilsen, Margaret
MacLean, Margaret R.
author_facet Docherty, Craig K.
Nilsen, Margaret
MacLean, Margaret R.
author_sort Docherty, Craig K.
collection PubMed
description BACKGROUND: Women are at greater risk of developing pulmonary arterial hypertension, with estrogen and its downstream metabolites playing a potential role in the pathogenesis of the disease. Hypoxia‐inducible factor‐1‐α (HIF1α) is a pro‐proliferative mediator and may be involved in the development of human pulmonary arterial hypertension. The estrogen metabolite 2‐methoxyestradiol (2ME2) has antiproliferative properties and is also an inhibitor of HIF1α. Here, we examine sex differences in HIF1α signaling in the rat and human pulmonary circulation and determine if 2ME2 can inhibit HIF1α in vivo and in vitro. METHODS AND RESULTS: HIF1α signaling was assessed in male and female distal human pulmonary artery smooth muscle cells (hPASMCs), and the effects of 2ME2 were also studied in female hPASMCs. The in vivo effects of 2ME2 in the chronic hypoxic rat (male and female) model of pulmonary hypertension were also determined. Basal HIF1α protein expression was higher in female hPASMCs compared with male. Both factor‐inhibiting HIF and prolyl hydroxylase‐2 (hydroxylates HIF leading to proteosomal degradation) protein levels were significantly lower in female hPASMCs when compared with males. In vivo, 2ME2 ablated hypoxia‐induced pulmonary hypertension in male and female rats while decreasing protein expression of HIF1α. 2ME2 reduced proliferation in hPASMCs and reduced basal protein expression of HIF1α. Furthermore, 2ME2 caused apoptosis and significant disruption to the microtubule network. CONCLUSIONS: Higher basal HIF1α in female hPASMCs may increase susceptibility to developing pulmonary arterial hypertension. These data also demonstrate that the antiproliferative and therapeutic effects of 2ME2 in pulmonary hypertension may involve inhibition of HIF1α and/or microtubular disruption in PASMCs.
format Online
Article
Text
id pubmed-6474940
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-64749402019-04-24 Influence of 2‐Methoxyestradiol and Sex on Hypoxia‐Induced Pulmonary Hypertension and Hypoxia‐Inducible Factor‐1‐α Docherty, Craig K. Nilsen, Margaret MacLean, Margaret R. J Am Heart Assoc Original Research BACKGROUND: Women are at greater risk of developing pulmonary arterial hypertension, with estrogen and its downstream metabolites playing a potential role in the pathogenesis of the disease. Hypoxia‐inducible factor‐1‐α (HIF1α) is a pro‐proliferative mediator and may be involved in the development of human pulmonary arterial hypertension. The estrogen metabolite 2‐methoxyestradiol (2ME2) has antiproliferative properties and is also an inhibitor of HIF1α. Here, we examine sex differences in HIF1α signaling in the rat and human pulmonary circulation and determine if 2ME2 can inhibit HIF1α in vivo and in vitro. METHODS AND RESULTS: HIF1α signaling was assessed in male and female distal human pulmonary artery smooth muscle cells (hPASMCs), and the effects of 2ME2 were also studied in female hPASMCs. The in vivo effects of 2ME2 in the chronic hypoxic rat (male and female) model of pulmonary hypertension were also determined. Basal HIF1α protein expression was higher in female hPASMCs compared with male. Both factor‐inhibiting HIF and prolyl hydroxylase‐2 (hydroxylates HIF leading to proteosomal degradation) protein levels were significantly lower in female hPASMCs when compared with males. In vivo, 2ME2 ablated hypoxia‐induced pulmonary hypertension in male and female rats while decreasing protein expression of HIF1α. 2ME2 reduced proliferation in hPASMCs and reduced basal protein expression of HIF1α. Furthermore, 2ME2 caused apoptosis and significant disruption to the microtubule network. CONCLUSIONS: Higher basal HIF1α in female hPASMCs may increase susceptibility to developing pulmonary arterial hypertension. These data also demonstrate that the antiproliferative and therapeutic effects of 2ME2 in pulmonary hypertension may involve inhibition of HIF1α and/or microtubular disruption in PASMCs. John Wiley and Sons Inc. 2019-03-01 /pmc/articles/PMC6474940/ /pubmed/30819028 http://dx.doi.org/10.1161/JAHA.118.011628 Text en © 2019 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
Docherty, Craig K.
Nilsen, Margaret
MacLean, Margaret R.
Influence of 2‐Methoxyestradiol and Sex on Hypoxia‐Induced Pulmonary Hypertension and Hypoxia‐Inducible Factor‐1‐α
title Influence of 2‐Methoxyestradiol and Sex on Hypoxia‐Induced Pulmonary Hypertension and Hypoxia‐Inducible Factor‐1‐α
title_full Influence of 2‐Methoxyestradiol and Sex on Hypoxia‐Induced Pulmonary Hypertension and Hypoxia‐Inducible Factor‐1‐α
title_fullStr Influence of 2‐Methoxyestradiol and Sex on Hypoxia‐Induced Pulmonary Hypertension and Hypoxia‐Inducible Factor‐1‐α
title_full_unstemmed Influence of 2‐Methoxyestradiol and Sex on Hypoxia‐Induced Pulmonary Hypertension and Hypoxia‐Inducible Factor‐1‐α
title_short Influence of 2‐Methoxyestradiol and Sex on Hypoxia‐Induced Pulmonary Hypertension and Hypoxia‐Inducible Factor‐1‐α
title_sort influence of 2‐methoxyestradiol and sex on hypoxia‐induced pulmonary hypertension and hypoxia‐inducible factor‐1‐α
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474940/
https://www.ncbi.nlm.nih.gov/pubmed/30819028
http://dx.doi.org/10.1161/JAHA.118.011628
work_keys_str_mv AT dochertycraigk influenceof2methoxyestradiolandsexonhypoxiainducedpulmonaryhypertensionandhypoxiainduciblefactor1a
AT nilsenmargaret influenceof2methoxyestradiolandsexonhypoxiainducedpulmonaryhypertensionandhypoxiainduciblefactor1a
AT macleanmargaretr influenceof2methoxyestradiolandsexonhypoxiainducedpulmonaryhypertensionandhypoxiainduciblefactor1a