Cargando…
DBC1 Regulates p53 Stability via Inhibition of CBP-Dependent p53 Polyubiquitination
The control of p53 protein stability is critical to its tumor suppressor functions. The CREB binding protein (CBP) transcriptional co-activator co-operates with MDM2 to maintain normally low physiological p53 levels in cells via exclusively cytoplasmic E4 polyubiquitination activity. Using mass spec...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478392/ https://www.ncbi.nlm.nih.gov/pubmed/30893604 http://dx.doi.org/10.1016/j.celrep.2019.02.076 |
Sumario: | The control of p53 protein stability is critical to its tumor suppressor functions. The CREB binding protein (CBP) transcriptional co-activator co-operates with MDM2 to maintain normally low physiological p53 levels in cells via exclusively cytoplasmic E4 polyubiquitination activity. Using mass spectrometry to identify nuclear and cytoplasmic CBP-interacting proteins that regulate compartmentalized CBP E4 activity, we identified deleted in breast cancer 1 (DBC1) as a stoichiometric CBP-interacting protein that negatively regulates CBP-dependent p53 polyubiquitination, stabilizes p53, and augments p53-dependent apoptosis. TCGA analysis demonstrated that solid tumors often retain wild-type p53 alleles in conjunction with DBC1 loss, supporting the hypothesis that DBC1 is selected for disruption during carcinogenesis as a surrogate for p53 functional loss. Because DBC1 maintains p53 stability in the nucleus, where p53 exerts its tumor-suppressive transcriptional function, replacement of DBC1 functionality in DBC1-deleted tumors might enhance p53 function and chemosensitivity for therapeutic benefit. |
---|