Cargando…
Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning
Extensive studies have shown that many animals’ capability of forming spatial representations for self-localization, path planning, and navigation relies on the functionalities of place and head-direction (HD) cells in the hippocampus. Although there are numerous hippocampal modeling approaches, onl...
Autores principales: | Zhou, Xiaomao, Bai, Tao, Gao, Yanbin, Han, Yuntao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479296/ https://www.ncbi.nlm.nih.gov/pubmed/30939807 http://dx.doi.org/10.3390/s19071576 |
Ejemplares similares
-
Hierarchical Vision Navigation System for Quadruped Robots with Foothold Adaptation Learning
por: Ren, Junli, et al.
Publicado: (2023) -
Towards Goal-Directed Navigation Through Combining Learning Based Global and Local Planners
por: Zhou, Xiaomao, et al.
Publicado: (2019) -
Hierarchical Exploration of Continuous Seismograms With Unsupervised Learning
por: Steinmann, René, et al.
Publicado: (2022) -
Reinforcement Learning With Vision-Proprioception Model for Robot Planar Pushing
por: Cong, Lin, et al.
Publicado: (2022) -
The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning
por: Yu, Jinglun, et al.
Publicado: (2020)