Cargando…
Single-Image Depth Inference Using Generative Adversarial Networks
Depth has been a valuable piece of information for perception tasks such as robot grasping, obstacle avoidance, and navigation, which are essential tasks for developing smart homes and smart cities. However, not all applications have the luxury of using depth sensors or multiple cameras to obtain de...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480060/ https://www.ncbi.nlm.nih.gov/pubmed/30974774 http://dx.doi.org/10.3390/s19071708 |
_version_ | 1783413489231986688 |
---|---|
author | Tan, Daniel Stanley Yao, Chih-Yuan Ruiz, Conrado Hua, Kai-Lung |
author_facet | Tan, Daniel Stanley Yao, Chih-Yuan Ruiz, Conrado Hua, Kai-Lung |
author_sort | Tan, Daniel Stanley |
collection | PubMed |
description | Depth has been a valuable piece of information for perception tasks such as robot grasping, obstacle avoidance, and navigation, which are essential tasks for developing smart homes and smart cities. However, not all applications have the luxury of using depth sensors or multiple cameras to obtain depth information. In this paper, we tackle the problem of estimating the per-pixel depths from a single image. Inspired by the recent works on generative neural network models, we formulate the task of depth estimation as a generative task where we synthesize an image of the depth map from a single Red, Green, and Blue (RGB) input image. We propose a novel generative adversarial network that has an encoder-decoder type generator with residual transposed convolution blocks trained with an adversarial loss. Quantitative and qualitative experimental results demonstrate the effectiveness of our approach over several depth estimation works. |
format | Online Article Text |
id | pubmed-6480060 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64800602019-04-29 Single-Image Depth Inference Using Generative Adversarial Networks Tan, Daniel Stanley Yao, Chih-Yuan Ruiz, Conrado Hua, Kai-Lung Sensors (Basel) Article Depth has been a valuable piece of information for perception tasks such as robot grasping, obstacle avoidance, and navigation, which are essential tasks for developing smart homes and smart cities. However, not all applications have the luxury of using depth sensors or multiple cameras to obtain depth information. In this paper, we tackle the problem of estimating the per-pixel depths from a single image. Inspired by the recent works on generative neural network models, we formulate the task of depth estimation as a generative task where we synthesize an image of the depth map from a single Red, Green, and Blue (RGB) input image. We propose a novel generative adversarial network that has an encoder-decoder type generator with residual transposed convolution blocks trained with an adversarial loss. Quantitative and qualitative experimental results demonstrate the effectiveness of our approach over several depth estimation works. MDPI 2019-04-10 /pmc/articles/PMC6480060/ /pubmed/30974774 http://dx.doi.org/10.3390/s19071708 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tan, Daniel Stanley Yao, Chih-Yuan Ruiz, Conrado Hua, Kai-Lung Single-Image Depth Inference Using Generative Adversarial Networks |
title | Single-Image Depth Inference Using Generative Adversarial Networks |
title_full | Single-Image Depth Inference Using Generative Adversarial Networks |
title_fullStr | Single-Image Depth Inference Using Generative Adversarial Networks |
title_full_unstemmed | Single-Image Depth Inference Using Generative Adversarial Networks |
title_short | Single-Image Depth Inference Using Generative Adversarial Networks |
title_sort | single-image depth inference using generative adversarial networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480060/ https://www.ncbi.nlm.nih.gov/pubmed/30974774 http://dx.doi.org/10.3390/s19071708 |
work_keys_str_mv | AT tandanielstanley singleimagedepthinferenceusinggenerativeadversarialnetworks AT yaochihyuan singleimagedepthinferenceusinggenerativeadversarialnetworks AT ruizconrado singleimagedepthinferenceusinggenerativeadversarialnetworks AT huakailung singleimagedepthinferenceusinggenerativeadversarialnetworks |