Cargando…
Single-Image Depth Inference Using Generative Adversarial Networks
Depth has been a valuable piece of information for perception tasks such as robot grasping, obstacle avoidance, and navigation, which are essential tasks for developing smart homes and smart cities. However, not all applications have the luxury of using depth sensors or multiple cameras to obtain de...
Autores principales: | Tan, Daniel Stanley, Yao, Chih-Yuan, Ruiz, Conrado, Hua, Kai-Lung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480060/ https://www.ncbi.nlm.nih.gov/pubmed/30974774 http://dx.doi.org/10.3390/s19071708 |
Ejemplares similares
-
Depth Map Upsampling via Multi-Modal Generative Adversarial Network
por: Tan, Daniel Stanley, et al.
Publicado: (2019) -
Phylogenetic inference using generative adversarial networks
por: Smith, Megan L, et al.
Publicado: (2023) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021) -
Automatic inference of demographic parameters using generative adversarial networks
por: Wang, Zhanpeng, et al.
Publicado: (2021) -
AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network
por: Rahnemoonfar, Maryam, et al.
Publicado: (2019)