Cargando…
Depth Map Upsampling via Multi-Modal Generative Adversarial Network
Autonomous robots for smart homes and smart cities mostly require depth perception in order to interact with their environments. However, depth maps are usually captured in a lower resolution as compared to RGB color images due to the inherent limitations of the sensors. Naively increasing its resol...
Autores principales: | Tan, Daniel Stanley, Lin, Jun-Ming, Lai, Yu-Chi, Ilao, Joel, Hua, Kai-Lung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480680/ https://www.ncbi.nlm.nih.gov/pubmed/30986925 http://dx.doi.org/10.3390/s19071587 |
Ejemplares similares
-
Single-Image Depth Inference Using Generative Adversarial Networks
por: Tan, Daniel Stanley, et al.
Publicado: (2019) -
High-Fidelity Depth Upsampling Using the Self-Learning Framework †
por: Shim, Inwook, et al.
Publicado: (2018) -
Multiview video plus depth transmission via virtual-view-assisted complementary down/upsampling
por: Jin, Zhi, et al.
Publicado: (2016) -
An Extremely Effective Spatial Pyramid and Pixel Shuffle Upsampling Decoder for Multiscale Monocular Depth Estimation
por: Luo, Huilan, et al.
Publicado: (2022) -
Multiscale Attention Fusion for Depth Map Super-Resolution Generative Adversarial Networks
por: Xu, Dan, et al.
Publicado: (2023)