Cargando…

Propagation of Pericentral Necrosis During Acetaminophen-Induced Liver Injury: Evidence for Early Interhepatocyte Communication and Information Exchange

Acetaminophen (APAP)-induced liver injury is clinically significant, and APAP overdose in mice often serves as a model for drug-induced liver injury in humans. By specifying that APAP metabolism, reactive metabolite formation, glutathione depletion, and mitigation of mitochondrial damage within indi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kennedy, Ryan C, Smith, Andrew K, Ropella, Glen E P, McGill, Mitchell R, Jaeschke, Hartmut, Hunt, C Anthony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484890/
https://www.ncbi.nlm.nih.gov/pubmed/30698817
http://dx.doi.org/10.1093/toxsci/kfz029
Descripción
Sumario:Acetaminophen (APAP)-induced liver injury is clinically significant, and APAP overdose in mice often serves as a model for drug-induced liver injury in humans. By specifying that APAP metabolism, reactive metabolite formation, glutathione depletion, and mitigation of mitochondrial damage within individual hepatocytes are functions of intralobular location, an earlier virtual model mechanism provided the first concrete multiattribute explanation for how and why early necrosis occurs close to the central vein (CV). However, two characteristic features could not be simulated consistently: necrosis occurring first adjacent to the CV, and subsequent necrosis occurring primarily adjacent to hepatocytes that have already initiated necrosis. We sought parsimonious model mechanism enhancements that would manage spatiotemporal heterogeneity sufficiently to enable meeting two new target attributes and conducted virtual experiments to explore different ideas for model mechanism improvement at intrahepatocyte and multihepatocyte levels. For the latter, evidence supports intercellular communication via exosomes, gap junctions, and connexin hemichannels playing essential roles in the toxic effects of chemicals, including facilitating or counteracting cell death processes. Logic requiring hepatocytes to obtain current information about whether downstream and lateral neighbors have triggered necrosis enabled virtual hepatocytes to achieve both new target attributes. A virtual hepatocyte that is glutathione-depleted uses that information to determine if it will initiate necrosis. When a less-stressed hepatocyte is flanked by at least two neighbors that have triggered necrosis, it too will initiate necrosis. We hypothesize that the resulting intercellular communication-enabled model mechanism is analogous to the actual explanation for APAP-induced hepatotoxicity at comparable levels of granularity.