Cargando…
Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data
BACKGROUND: A large number of algorithms is being developed to reconstruct evolutionary models of individual tumours from genome sequencing data. Most methods can analyze multiple samples collected either through bulk multi-region sequencing experiments or the sequencing of individual cancer cells....
Autores principales: | Ramazzotti, Daniele, Graudenzi, Alex, De Sano, Luca, Antoniotti, Marco, Caravagna, Giulio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485126/ https://www.ncbi.nlm.nih.gov/pubmed/31023236 http://dx.doi.org/10.1186/s12859-019-2795-4 |
Ejemplares similares
-
Modeling Cumulative Biological Phenomena with Suppes-Bayes Causal Networks
por: Ramazzotti, Daniele, et al.
Publicado: (2018) -
Inferring Tree Causal Models of Cancer Progression with Probability Raising
por: Loohuis, Loes Olde, et al.
Publicado: (2014) -
Investigating the Relation between Stochastic Differentiation, Homeostasis and Clonal Expansion in Intestinal Crypts via Multiscale Modeling
por: Graudenzi, Alex, et al.
Publicado: (2014) -
Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients
por: Fontana, Diletta, et al.
Publicado: (2023) -
CABeRNET: a Cytoscape app for augmented Boolean models of gene regulatory NETworks
por: Paroni, Andrea, et al.
Publicado: (2016)