Cargando…

Sickle cell disease up‐regulates vasopressin, aquaporin 2, urea transporter A1, Na‐K‐Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability

Sickle cell disease (SCD)‐induced urinary concentration defect has been proposed as caused by impaired ability of the occluded vasa recta due to red blood cell sickling to serve as countercurrent exchangers and renal tubules to absorb water and solutes. However, the exact molecular mechanisms remain...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hong, Morris, Ryan G., Knepper, Mark A., Zhou, Xiaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487471/
https://www.ncbi.nlm.nih.gov/pubmed/31033226
http://dx.doi.org/10.14814/phy2.14066
_version_ 1783414510448541696
author Wang, Hong
Morris, Ryan G.
Knepper, Mark A.
Zhou, Xiaoming
author_facet Wang, Hong
Morris, Ryan G.
Knepper, Mark A.
Zhou, Xiaoming
author_sort Wang, Hong
collection PubMed
description Sickle cell disease (SCD)‐induced urinary concentration defect has been proposed as caused by impaired ability of the occluded vasa recta due to red blood cell sickling to serve as countercurrent exchangers and renal tubules to absorb water and solutes. However, the exact molecular mechanisms remain largely unknown. The present studies were undertaken to determine the effects of SCD on vasopressin, aquaporin2 (AQP2), urea transporter A1 (UTA1), Na‐K‐Cl co‐transporter 2 (NKCC2), epithelial Na channels (ENaC), aquaporin1 (AQP1), nuclear factor of activated T cells 5 (NFAT5) and Src homology region‐2 domain‐containing phosphatase‐1 (SHP‐1), an important regulator of NFAT5, in the Berkeley SCD mouse kidney medulla. Under water repletion, SCD only induced a minor urinary concentration defect associated with increased urinary vasopressin level alone with the well‐known effects of vasopressin: protein abundance of AQP2, UTA1 and ENaC‐β and apical targeting of AQP2 as compared with non‐SCD. SCD did not significantly affect AQP1 protein level. Water restriction had no further significant effect on SCD urinary vasopressin. NFAT5 is also critical to urinary concentration. Instead, water restriction‐activated NFAT5 associated with inhibition of SHP‐1 in the SCD mice. Yet, water restriction only elevated urinary osmolality by 28% in these mice as opposed to 104% in non‐SCD mice despite similar degree increases of protein abundance of AQP2, NKCC2 and AQP2‐S256‐P. Water‐restriction had no significant effect on protein abundance of ENaC or AQP1 in either strain. In conclusion, under water repletion SCD, only induces a minor defect in urinary concentration because of compensation from the up‐regulated vasopressin system. However, under water restriction, SCD mice struggle to concentrate urine despite activating NFAT5. SCD‐induced urinary concentration defect appears to be resulted from the poor blood flow in vasa recta rather than the renal tubules’ ability to absorb water and solutes.
format Online
Article
Text
id pubmed-6487471
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-64874712019-05-06 Sickle cell disease up‐regulates vasopressin, aquaporin 2, urea transporter A1, Na‐K‐Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability Wang, Hong Morris, Ryan G. Knepper, Mark A. Zhou, Xiaoming Physiol Rep Original Research Sickle cell disease (SCD)‐induced urinary concentration defect has been proposed as caused by impaired ability of the occluded vasa recta due to red blood cell sickling to serve as countercurrent exchangers and renal tubules to absorb water and solutes. However, the exact molecular mechanisms remain largely unknown. The present studies were undertaken to determine the effects of SCD on vasopressin, aquaporin2 (AQP2), urea transporter A1 (UTA1), Na‐K‐Cl co‐transporter 2 (NKCC2), epithelial Na channels (ENaC), aquaporin1 (AQP1), nuclear factor of activated T cells 5 (NFAT5) and Src homology region‐2 domain‐containing phosphatase‐1 (SHP‐1), an important regulator of NFAT5, in the Berkeley SCD mouse kidney medulla. Under water repletion, SCD only induced a minor urinary concentration defect associated with increased urinary vasopressin level alone with the well‐known effects of vasopressin: protein abundance of AQP2, UTA1 and ENaC‐β and apical targeting of AQP2 as compared with non‐SCD. SCD did not significantly affect AQP1 protein level. Water restriction had no further significant effect on SCD urinary vasopressin. NFAT5 is also critical to urinary concentration. Instead, water restriction‐activated NFAT5 associated with inhibition of SHP‐1 in the SCD mice. Yet, water restriction only elevated urinary osmolality by 28% in these mice as opposed to 104% in non‐SCD mice despite similar degree increases of protein abundance of AQP2, NKCC2 and AQP2‐S256‐P. Water‐restriction had no significant effect on protein abundance of ENaC or AQP1 in either strain. In conclusion, under water repletion SCD, only induces a minor defect in urinary concentration because of compensation from the up‐regulated vasopressin system. However, under water restriction, SCD mice struggle to concentrate urine despite activating NFAT5. SCD‐induced urinary concentration defect appears to be resulted from the poor blood flow in vasa recta rather than the renal tubules’ ability to absorb water and solutes. John Wiley and Sons Inc. 2019-04-29 /pmc/articles/PMC6487471/ /pubmed/31033226 http://dx.doi.org/10.14814/phy2.14066 Text en © Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Wang, Hong
Morris, Ryan G.
Knepper, Mark A.
Zhou, Xiaoming
Sickle cell disease up‐regulates vasopressin, aquaporin 2, urea transporter A1, Na‐K‐Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability
title Sickle cell disease up‐regulates vasopressin, aquaporin 2, urea transporter A1, Na‐K‐Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability
title_full Sickle cell disease up‐regulates vasopressin, aquaporin 2, urea transporter A1, Na‐K‐Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability
title_fullStr Sickle cell disease up‐regulates vasopressin, aquaporin 2, urea transporter A1, Na‐K‐Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability
title_full_unstemmed Sickle cell disease up‐regulates vasopressin, aquaporin 2, urea transporter A1, Na‐K‐Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability
title_short Sickle cell disease up‐regulates vasopressin, aquaporin 2, urea transporter A1, Na‐K‐Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability
title_sort sickle cell disease up‐regulates vasopressin, aquaporin 2, urea transporter a1, na‐k‐cl cotransporter 2, and epithelial na channels in the mouse kidney medulla despite compromising urinary concentration ability
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487471/
https://www.ncbi.nlm.nih.gov/pubmed/31033226
http://dx.doi.org/10.14814/phy2.14066
work_keys_str_mv AT wanghong sicklecelldiseaseupregulatesvasopressinaquaporin2ureatransportera1nakclcotransporter2andepithelialnachannelsinthemousekidneymedulladespitecompromisingurinaryconcentrationability
AT morrisryang sicklecelldiseaseupregulatesvasopressinaquaporin2ureatransportera1nakclcotransporter2andepithelialnachannelsinthemousekidneymedulladespitecompromisingurinaryconcentrationability
AT kneppermarka sicklecelldiseaseupregulatesvasopressinaquaporin2ureatransportera1nakclcotransporter2andepithelialnachannelsinthemousekidneymedulladespitecompromisingurinaryconcentrationability
AT zhouxiaoming sicklecelldiseaseupregulatesvasopressinaquaporin2ureatransportera1nakclcotransporter2andepithelialnachannelsinthemousekidneymedulladespitecompromisingurinaryconcentrationability