Cargando…

Re-interpretation of PAM50 gene expression as quantitative tumor dimensions shows utility for clinical trials: application to prognosis and response to paclitaxel in breast cancer

BACKGROUND: We recently showed PAM50 gene expression data can be represented by five quantitative, orthogonal, multi-gene breast tumor traits. These novel tumor ‘dimensions’ were superior to categorical intrinsic subtypes for clustering in high-risk breast cancer pedigrees, indicating potential to r...

Descripción completa

Detalles Bibliográficos
Autores principales: Camp, Nicola J., Madsen, Michael J., Herranz, Jesús, Rodríguez-Lescure, Álvaro, Ruiz, Amparo, Martín, Miguel, Bernard, Philip S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491406/
https://www.ncbi.nlm.nih.gov/pubmed/30673970
http://dx.doi.org/10.1007/s10549-018-05097-5
_version_ 1783414928791568384
author Camp, Nicola J.
Madsen, Michael J.
Herranz, Jesús
Rodríguez-Lescure, Álvaro
Ruiz, Amparo
Martín, Miguel
Bernard, Philip S.
author_facet Camp, Nicola J.
Madsen, Michael J.
Herranz, Jesús
Rodríguez-Lescure, Álvaro
Ruiz, Amparo
Martín, Miguel
Bernard, Philip S.
author_sort Camp, Nicola J.
collection PubMed
description BACKGROUND: We recently showed PAM50 gene expression data can be represented by five quantitative, orthogonal, multi-gene breast tumor traits. These novel tumor ‘dimensions’ were superior to categorical intrinsic subtypes for clustering in high-risk breast cancer pedigrees, indicating potential to represent underlying genetic susceptibilities and biological pathways. Here we explore the prognostic and predictive utility of these dimensions in a sub-study of GEICAM/9906, a Phase III randomized prospective clinical trial of paclitaxel in breast cancer. METHODS: Tumor dimensions, PC1–PC5, were calculated using pre-defined coefficients. Univariable and multivariable Cox proportional hazards (PH) models for disease-free survival (DFS) were used to identify associations between quantitative dimensions and prognosis or response to the addition of paclitaxel. Results were illustrated using Kaplan–Meier curves. RESULTS: Dimensions PC1 and PC5 were associated with DFS (Cox PH p = 6.7 [Formula: see text]  10(−7) and p = 0.036), remaining significant after correction for standard clinical–pathological prognostic characteristics. Both dimensions were selected in the optimal multivariable model, together with nodal status and tumor size (Cox PH p = 1.4 [Formula: see text]  10(−12)). Interactions with treatment were identified for PC3 and PC4. Response to paclitaxel was restricted to tumors with low PC3 and PC4 (log-rank p = 0.0021). Women with tumors high for PC3 or PC4 showed no survival advantage. CONCLUSIONS: Our proof-of-concept application of quantitative dimensions illustrated novel findings and clinical utility beyond standard clinical–pathological characteristics and categorical intrinsic subtypes for prognosis and predicting chemotherapy response. Consideration of expression data as quantitative tumor dimensions offers new potential to identify clinically important patient subsets in clinical trials and advance precision medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10549-018-05097-5) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6491406
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-64914062019-05-17 Re-interpretation of PAM50 gene expression as quantitative tumor dimensions shows utility for clinical trials: application to prognosis and response to paclitaxel in breast cancer Camp, Nicola J. Madsen, Michael J. Herranz, Jesús Rodríguez-Lescure, Álvaro Ruiz, Amparo Martín, Miguel Bernard, Philip S. Breast Cancer Res Treat Clinical Trial BACKGROUND: We recently showed PAM50 gene expression data can be represented by five quantitative, orthogonal, multi-gene breast tumor traits. These novel tumor ‘dimensions’ were superior to categorical intrinsic subtypes for clustering in high-risk breast cancer pedigrees, indicating potential to represent underlying genetic susceptibilities and biological pathways. Here we explore the prognostic and predictive utility of these dimensions in a sub-study of GEICAM/9906, a Phase III randomized prospective clinical trial of paclitaxel in breast cancer. METHODS: Tumor dimensions, PC1–PC5, were calculated using pre-defined coefficients. Univariable and multivariable Cox proportional hazards (PH) models for disease-free survival (DFS) were used to identify associations between quantitative dimensions and prognosis or response to the addition of paclitaxel. Results were illustrated using Kaplan–Meier curves. RESULTS: Dimensions PC1 and PC5 were associated with DFS (Cox PH p = 6.7 [Formula: see text]  10(−7) and p = 0.036), remaining significant after correction for standard clinical–pathological prognostic characteristics. Both dimensions were selected in the optimal multivariable model, together with nodal status and tumor size (Cox PH p = 1.4 [Formula: see text]  10(−12)). Interactions with treatment were identified for PC3 and PC4. Response to paclitaxel was restricted to tumors with low PC3 and PC4 (log-rank p = 0.0021). Women with tumors high for PC3 or PC4 showed no survival advantage. CONCLUSIONS: Our proof-of-concept application of quantitative dimensions illustrated novel findings and clinical utility beyond standard clinical–pathological characteristics and categorical intrinsic subtypes for prognosis and predicting chemotherapy response. Consideration of expression data as quantitative tumor dimensions offers new potential to identify clinically important patient subsets in clinical trials and advance precision medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10549-018-05097-5) contains supplementary material, which is available to authorized users. Springer US 2019-01-23 2019 /pmc/articles/PMC6491406/ /pubmed/30673970 http://dx.doi.org/10.1007/s10549-018-05097-5 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Clinical Trial
Camp, Nicola J.
Madsen, Michael J.
Herranz, Jesús
Rodríguez-Lescure, Álvaro
Ruiz, Amparo
Martín, Miguel
Bernard, Philip S.
Re-interpretation of PAM50 gene expression as quantitative tumor dimensions shows utility for clinical trials: application to prognosis and response to paclitaxel in breast cancer
title Re-interpretation of PAM50 gene expression as quantitative tumor dimensions shows utility for clinical trials: application to prognosis and response to paclitaxel in breast cancer
title_full Re-interpretation of PAM50 gene expression as quantitative tumor dimensions shows utility for clinical trials: application to prognosis and response to paclitaxel in breast cancer
title_fullStr Re-interpretation of PAM50 gene expression as quantitative tumor dimensions shows utility for clinical trials: application to prognosis and response to paclitaxel in breast cancer
title_full_unstemmed Re-interpretation of PAM50 gene expression as quantitative tumor dimensions shows utility for clinical trials: application to prognosis and response to paclitaxel in breast cancer
title_short Re-interpretation of PAM50 gene expression as quantitative tumor dimensions shows utility for clinical trials: application to prognosis and response to paclitaxel in breast cancer
title_sort re-interpretation of pam50 gene expression as quantitative tumor dimensions shows utility for clinical trials: application to prognosis and response to paclitaxel in breast cancer
topic Clinical Trial
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491406/
https://www.ncbi.nlm.nih.gov/pubmed/30673970
http://dx.doi.org/10.1007/s10549-018-05097-5
work_keys_str_mv AT campnicolaj reinterpretationofpam50geneexpressionasquantitativetumordimensionsshowsutilityforclinicaltrialsapplicationtoprognosisandresponsetopaclitaxelinbreastcancer
AT madsenmichaelj reinterpretationofpam50geneexpressionasquantitativetumordimensionsshowsutilityforclinicaltrialsapplicationtoprognosisandresponsetopaclitaxelinbreastcancer
AT herranzjesus reinterpretationofpam50geneexpressionasquantitativetumordimensionsshowsutilityforclinicaltrialsapplicationtoprognosisandresponsetopaclitaxelinbreastcancer
AT rodriguezlescurealvaro reinterpretationofpam50geneexpressionasquantitativetumordimensionsshowsutilityforclinicaltrialsapplicationtoprognosisandresponsetopaclitaxelinbreastcancer
AT ruizamparo reinterpretationofpam50geneexpressionasquantitativetumordimensionsshowsutilityforclinicaltrialsapplicationtoprognosisandresponsetopaclitaxelinbreastcancer
AT martinmiguel reinterpretationofpam50geneexpressionasquantitativetumordimensionsshowsutilityforclinicaltrialsapplicationtoprognosisandresponsetopaclitaxelinbreastcancer
AT bernardphilips reinterpretationofpam50geneexpressionasquantitativetumordimensionsshowsutilityforclinicaltrialsapplicationtoprognosisandresponsetopaclitaxelinbreastcancer