Cargando…
Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21
Campylobacter jejuni is among the most common causes of diarrheal disease worldwide and efforts to develop protective measures against the pathogen are ongoing. One of the few defined virulence factors targeted for vaccine development is the capsule polysaccharide (CPS). We have developed a capsule...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495334/ https://www.ncbi.nlm.nih.gov/pubmed/31043512 http://dx.doi.org/10.1128/mSphere.00101-19 |
_version_ | 1783415344865476608 |
---|---|
author | Ramakrishnan, Amritha Schumack, Nina M. Gariepy, Christina L. Eggleston, Heather Nunez, Gladys Espinoza, Nereyda Nieto, Monica Castillo, Rosa Rojas, Jesus McCoy, Andrea J. Beck, Zoltan Matyas, Gary R. Alving, Carl R. Guerry, Patricia Poly, Frédéric Laird, Renee M. |
author_facet | Ramakrishnan, Amritha Schumack, Nina M. Gariepy, Christina L. Eggleston, Heather Nunez, Gladys Espinoza, Nereyda Nieto, Monica Castillo, Rosa Rojas, Jesus McCoy, Andrea J. Beck, Zoltan Matyas, Gary R. Alving, Carl R. Guerry, Patricia Poly, Frédéric Laird, Renee M. |
author_sort | Ramakrishnan, Amritha |
collection | PubMed |
description | Campylobacter jejuni is among the most common causes of diarrheal disease worldwide and efforts to develop protective measures against the pathogen are ongoing. One of the few defined virulence factors targeted for vaccine development is the capsule polysaccharide (CPS). We have developed a capsule conjugate vaccine against C. jejuni strain 81-176 (CPS-CRM) that is immunogenic in mice and nonhuman primates (NHPs) but only moderately immunogenic in humans when delivered alone or with aluminum hydroxide. To enhance immunogenicity, two novel liposome-based adjuvant systems, the Army Liposome Formulation (ALF), containing synthetic monophosphoryl lipid A, and ALF plus QS-21 (ALFQ), were evaluated with CPS-CRM in this study. In mice, ALF and ALFQ induced similar amounts of CPS-specific IgG that was significantly higher than levels induced by CPS-CRM alone. Qualitative differences in antibody responses were observed where CPS-CRM alone induced Th2-biased IgG1, whereas ALF and ALFQ enhanced Th1-mediated anti-CPS IgG2b and IgG2c and generated functional bactericidal antibody titers. CPS-CRM + ALFQ was superior to vaccine alone or CPS-CRM + ALF in augmenting antigen-specific Th1, Th2, and Th17 cytokine responses and a significantly higher proportion of CD4(+) IFN-γ(+) IL-2(+) TNF-α(+) and CD4(+) IL-4(+) IL-10(+) T cells. ALFQ also significantly enhanced anti-CPS responses in NHPs when delivered with CPS-CRM compared to alum- or ALF-adjuvanted groups and showed the highest protective efficacy against diarrhea following orogastric challenge with C. jejuni. This study provides evidence that the ALF adjuvants may provide enhanced immunogenicity of this and other novel C. jejuni capsule conjugate vaccines in humans. IMPORTANCE Campylobacter jejuni is a leading cause of diarrheal disease worldwide, and currently no preventative interventions are available. C. jejuni is an invasive mucosal pathogen that has a variety of polysaccharide structures on its surface, including a capsule. In phase 1 studies, a C. jejuni capsule conjugate vaccine was safe but poorly immunogenic when delivered alone or with aluminum hydroxide. Here, we report enhanced immunogenicity of the conjugate vaccine delivered with liposome adjuvants containing monophosphoryl lipid A without or with QS-21, known as ALF and ALFQ, respectively, in preclinical studies. Both liposome adjuvants significantly enhanced immunity in mice and nonhuman primates and improved protective efficacy of the vaccine compared to alum in a nonhuman primate C. jejuni diarrhea model, providing promising evidence that these potent adjuvant formulations may enhance immunogenicity in upcoming human studies with this C. jejuni conjugate and other malaria and HIV vaccine platforms. |
format | Online Article Text |
id | pubmed-6495334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-64953342019-05-03 Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21 Ramakrishnan, Amritha Schumack, Nina M. Gariepy, Christina L. Eggleston, Heather Nunez, Gladys Espinoza, Nereyda Nieto, Monica Castillo, Rosa Rojas, Jesus McCoy, Andrea J. Beck, Zoltan Matyas, Gary R. Alving, Carl R. Guerry, Patricia Poly, Frédéric Laird, Renee M. mSphere Research Article Campylobacter jejuni is among the most common causes of diarrheal disease worldwide and efforts to develop protective measures against the pathogen are ongoing. One of the few defined virulence factors targeted for vaccine development is the capsule polysaccharide (CPS). We have developed a capsule conjugate vaccine against C. jejuni strain 81-176 (CPS-CRM) that is immunogenic in mice and nonhuman primates (NHPs) but only moderately immunogenic in humans when delivered alone or with aluminum hydroxide. To enhance immunogenicity, two novel liposome-based adjuvant systems, the Army Liposome Formulation (ALF), containing synthetic monophosphoryl lipid A, and ALF plus QS-21 (ALFQ), were evaluated with CPS-CRM in this study. In mice, ALF and ALFQ induced similar amounts of CPS-specific IgG that was significantly higher than levels induced by CPS-CRM alone. Qualitative differences in antibody responses were observed where CPS-CRM alone induced Th2-biased IgG1, whereas ALF and ALFQ enhanced Th1-mediated anti-CPS IgG2b and IgG2c and generated functional bactericidal antibody titers. CPS-CRM + ALFQ was superior to vaccine alone or CPS-CRM + ALF in augmenting antigen-specific Th1, Th2, and Th17 cytokine responses and a significantly higher proportion of CD4(+) IFN-γ(+) IL-2(+) TNF-α(+) and CD4(+) IL-4(+) IL-10(+) T cells. ALFQ also significantly enhanced anti-CPS responses in NHPs when delivered with CPS-CRM compared to alum- or ALF-adjuvanted groups and showed the highest protective efficacy against diarrhea following orogastric challenge with C. jejuni. This study provides evidence that the ALF adjuvants may provide enhanced immunogenicity of this and other novel C. jejuni capsule conjugate vaccines in humans. IMPORTANCE Campylobacter jejuni is a leading cause of diarrheal disease worldwide, and currently no preventative interventions are available. C. jejuni is an invasive mucosal pathogen that has a variety of polysaccharide structures on its surface, including a capsule. In phase 1 studies, a C. jejuni capsule conjugate vaccine was safe but poorly immunogenic when delivered alone or with aluminum hydroxide. Here, we report enhanced immunogenicity of the conjugate vaccine delivered with liposome adjuvants containing monophosphoryl lipid A without or with QS-21, known as ALF and ALFQ, respectively, in preclinical studies. Both liposome adjuvants significantly enhanced immunity in mice and nonhuman primates and improved protective efficacy of the vaccine compared to alum in a nonhuman primate C. jejuni diarrhea model, providing promising evidence that these potent adjuvant formulations may enhance immunogenicity in upcoming human studies with this C. jejuni conjugate and other malaria and HIV vaccine platforms. American Society for Microbiology 2019-05-01 /pmc/articles/PMC6495334/ /pubmed/31043512 http://dx.doi.org/10.1128/mSphere.00101-19 Text en https://doi.org/10.1128/AuthorWarrantyLicense.v1 This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. |
spellingShingle | Research Article Ramakrishnan, Amritha Schumack, Nina M. Gariepy, Christina L. Eggleston, Heather Nunez, Gladys Espinoza, Nereyda Nieto, Monica Castillo, Rosa Rojas, Jesus McCoy, Andrea J. Beck, Zoltan Matyas, Gary R. Alving, Carl R. Guerry, Patricia Poly, Frédéric Laird, Renee M. Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21 |
title | Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21 |
title_full | Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21 |
title_fullStr | Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21 |
title_full_unstemmed | Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21 |
title_short | Enhanced Immunogenicity and Protective Efficacy of a Campylobacter jejuni Conjugate Vaccine Coadministered with Liposomes Containing Monophosphoryl Lipid A and QS-21 |
title_sort | enhanced immunogenicity and protective efficacy of a campylobacter jejuni conjugate vaccine coadministered with liposomes containing monophosphoryl lipid a and qs-21 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495334/ https://www.ncbi.nlm.nih.gov/pubmed/31043512 http://dx.doi.org/10.1128/mSphere.00101-19 |
work_keys_str_mv | AT ramakrishnanamritha enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT schumackninam enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT gariepychristinal enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT egglestonheather enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT nunezgladys enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT espinozanereyda enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT nietomonica enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT castillorosa enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT rojasjesus enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT mccoyandreaj enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT beckzoltan enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT matyasgaryr enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT alvingcarlr enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT guerrypatricia enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT polyfrederic enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 AT lairdreneem enhancedimmunogenicityandprotectiveefficacyofacampylobacterjejuniconjugatevaccinecoadministeredwithliposomescontainingmonophosphoryllipidaandqs21 |