Cargando…

Zerumbone, a cyclic sesquiterpene, exerts antimitotic activity in HeLa cells through tubulin binding and exhibits synergistic activity with vinblastine and paclitaxel

OBJECTIVES: The aim of this study was to elucidate the antimitotic mechanism of zerumbone and to investigate its effect on the HeLa cells in combination with other mitotic blockers. MATERIALS AND METHODS: HeLa cells and fluorescence microscopy were used to analyse the effect of zerumbone on cancer c...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashraf, Shabeeba M., Sebastian, Jomon, Rathinasamy, Krishnan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6496756/
https://www.ncbi.nlm.nih.gov/pubmed/30525278
http://dx.doi.org/10.1111/cpr.12558
Descripción
Sumario:OBJECTIVES: The aim of this study was to elucidate the antimitotic mechanism of zerumbone and to investigate its effect on the HeLa cells in combination with other mitotic blockers. MATERIALS AND METHODS: HeLa cells and fluorescence microscopy were used to analyse the effect of zerumbone on cancer cell lines. Cellular internalization of zerumbone was investigated using FITC‐labelled zerumbone. The interaction of zerumbone with tubulin was characterized using fluorescence spectroscopy. The Chou and Talalay equation was used to calculate the combination index. RESULTS: Zerumbone selectively inhibited the proliferation of HeLa cells with an IC(50) of 14.2 ± 0.5 μmol/L through enhanced cellular uptake compared to the normal cell line L929. It induced a strong mitotic block with cells exhibiting bipolar spindles at the IC(50) and monopolar spindles at 30 μmol/L. Docking analysis indicated that tubulin is the principal target of zerumbone. In vitro studies indicated that it bound to goat brain tubulin with a Kd of 4 μmol/L and disrupted the assembly of tubulin into microtubules. Zerumbone and colchicine had partially overlapping binding site on tubulin. Zerumbone synergistically enhanced the anti‐proliferative activity of vinblastine and paclitaxel through augmented mitotic block. CONCLUSION: Our data suggest that disruption of microtubule assembly dynamics is one of the mechanisms of the anti‐cancer activity of zerumbone and it can be used in combination therapy targeting cell division.