Cargando…

BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data

Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include...

Descripción completa

Detalles Bibliográficos
Autores principales: Lachance, Jean-Christophe, Lloyd, Colton J., Monk, Jonathan M., Yang, Laurence, Sastry, Anand V., Seif, Yara, Palsson, Bernhard O., Rodrigue, Sébastien, Feist, Adam M., King, Zachary A., Jacques, Pierre-Étienne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497307/
https://www.ncbi.nlm.nih.gov/pubmed/31009451
http://dx.doi.org/10.1371/journal.pcbi.1006971
_version_ 1783415448721686528
author Lachance, Jean-Christophe
Lloyd, Colton J.
Monk, Jonathan M.
Yang, Laurence
Sastry, Anand V.
Seif, Yara
Palsson, Bernhard O.
Rodrigue, Sébastien
Feist, Adam M.
King, Zachary A.
Jacques, Pierre-Étienne
author_facet Lachance, Jean-Christophe
Lloyd, Colton J.
Monk, Jonathan M.
Yang, Laurence
Sastry, Anand V.
Seif, Yara
Palsson, Bernhard O.
Rodrigue, Sébastien
Feist, Adam M.
King, Zachary A.
Jacques, Pierre-Étienne
author_sort Lachance, Jean-Christophe
collection PubMed
description Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat).
format Online
Article
Text
id pubmed-6497307
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-64973072019-05-17 BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data Lachance, Jean-Christophe Lloyd, Colton J. Monk, Jonathan M. Yang, Laurence Sastry, Anand V. Seif, Yara Palsson, Bernhard O. Rodrigue, Sébastien Feist, Adam M. King, Zachary A. Jacques, Pierre-Étienne PLoS Comput Biol Research Article Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat). Public Library of Science 2019-04-22 /pmc/articles/PMC6497307/ /pubmed/31009451 http://dx.doi.org/10.1371/journal.pcbi.1006971 Text en © 2019 Lachance et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Lachance, Jean-Christophe
Lloyd, Colton J.
Monk, Jonathan M.
Yang, Laurence
Sastry, Anand V.
Seif, Yara
Palsson, Bernhard O.
Rodrigue, Sébastien
Feist, Adam M.
King, Zachary A.
Jacques, Pierre-Étienne
BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
title BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
title_full BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
title_fullStr BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
title_full_unstemmed BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
title_short BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
title_sort bofdat: generating biomass objective functions for genome-scale metabolic models from experimental data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497307/
https://www.ncbi.nlm.nih.gov/pubmed/31009451
http://dx.doi.org/10.1371/journal.pcbi.1006971
work_keys_str_mv AT lachancejeanchristophe bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata
AT lloydcoltonj bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata
AT monkjonathanm bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata
AT yanglaurence bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata
AT sastryanandv bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata
AT seifyara bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata
AT palssonbernhardo bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata
AT rodriguesebastien bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata
AT feistadamm bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata
AT kingzacharya bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata
AT jacquespierreetienne bofdatgeneratingbiomassobjectivefunctionsforgenomescalemetabolicmodelsfromexperimentaldata