Cargando…
Co-expression of Cas9 and single-guided RNAs in Escherichia coli streamlines production of Cas9 ribonucleoproteins
CRISPR/Cas9 ribonucleoprotein (RNP) complexes are promising biological tools with diverse biomedical applications. However, to date there are no efficient methods that can produce these proteins at large scales and low cost. Here, we present a streamlined method for direct production of Cas9 RNPs fr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499778/ https://www.ncbi.nlm.nih.gov/pubmed/31069270 http://dx.doi.org/10.1038/s42003-019-0402-x |
Sumario: | CRISPR/Cas9 ribonucleoprotein (RNP) complexes are promising biological tools with diverse biomedical applications. However, to date there are no efficient methods that can produce these proteins at large scales and low cost. Here, we present a streamlined method for direct production of Cas9 RNPs from Escherichia coli by co-expression of Cas9 and the target-specific single-guided RNAs. Harnessing an ultrahigh-affinity CL7/Im7 purification system recently developed we achieve one-step purification of the self-assembling CRISPR/Cas RNPs, including the commonly used Cas9 and Cas12a, within half a day and with a ~fourfold higher yield than incumbent methods. The prepared Cas RNPs show remarkable stability in the absence of RNase inhibitors, as well as profound gene-editing efficiency in vitro and in vivo. Our method is convenient, cost-effective, and can be used to prepare other CRISPR/Cas RNPs. |
---|