Cargando…
Brain transcriptome analysis of a familial Alzheimer’s disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production
To prevent or ameliorate Alzheimer’s disease (AD) we must understand its molecular basis. AD develops over decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating the disease may be obscured by compensatory responses and neurodegenerative pr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500017/ https://www.ncbi.nlm.nih.gov/pubmed/31053140 http://dx.doi.org/10.1186/s13041-019-0467-y |
_version_ | 1783415872603291648 |
---|---|
author | Newman, Morgan Hin, Nhi Pederson, Stephen Lardelli, Michael |
author_facet | Newman, Morgan Hin, Nhi Pederson, Stephen Lardelli, Michael |
author_sort | Newman, Morgan |
collection | PubMed |
description | To prevent or ameliorate Alzheimer’s disease (AD) we must understand its molecular basis. AD develops over decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating the disease may be obscured by compensatory responses and neurodegenerative processes. Rare, dominant mutations in a small number of genes, but particularly the gene PRESENILIN 1 (PSEN1), drive early onset of familial AD (EOfAD). Numerous transgenic models of AD have been constructed in mouse and other organisms, but transcriptomic analysis of these models has raised serious doubts regarding their representation of the disease state. Since we lack clarity regarding the molecular mechanism(s) underlying AD, we posit that the most valid approach is to model the human EOfAD genetic state as closely as possible. Therefore, we sought to analyse brains from zebrafish heterozygous for a single, EOfAD-like mutation in their PSEN1-orthologous gene, psen1. We previously introduced an EOfAD-like mutation (Q96_K97del) into the endogenous psen1 gene of zebrafish. Here, we analysed transcriptomes of young adult (6-month-old) entire brains from a family of heterozygous mutant and wild type sibling fish. Gene ontology (GO) analysis implies effects on mitochondria, particularly ATP synthesis, and on ATP-dependent processes including vacuolar acidification. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13041-019-0467-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6500017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65000172019-05-09 Brain transcriptome analysis of a familial Alzheimer’s disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production Newman, Morgan Hin, Nhi Pederson, Stephen Lardelli, Michael Mol Brain Micro Report To prevent or ameliorate Alzheimer’s disease (AD) we must understand its molecular basis. AD develops over decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating the disease may be obscured by compensatory responses and neurodegenerative processes. Rare, dominant mutations in a small number of genes, but particularly the gene PRESENILIN 1 (PSEN1), drive early onset of familial AD (EOfAD). Numerous transgenic models of AD have been constructed in mouse and other organisms, but transcriptomic analysis of these models has raised serious doubts regarding their representation of the disease state. Since we lack clarity regarding the molecular mechanism(s) underlying AD, we posit that the most valid approach is to model the human EOfAD genetic state as closely as possible. Therefore, we sought to analyse brains from zebrafish heterozygous for a single, EOfAD-like mutation in their PSEN1-orthologous gene, psen1. We previously introduced an EOfAD-like mutation (Q96_K97del) into the endogenous psen1 gene of zebrafish. Here, we analysed transcriptomes of young adult (6-month-old) entire brains from a family of heterozygous mutant and wild type sibling fish. Gene ontology (GO) analysis implies effects on mitochondria, particularly ATP synthesis, and on ATP-dependent processes including vacuolar acidification. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13041-019-0467-y) contains supplementary material, which is available to authorized users. BioMed Central 2019-05-03 /pmc/articles/PMC6500017/ /pubmed/31053140 http://dx.doi.org/10.1186/s13041-019-0467-y Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Micro Report Newman, Morgan Hin, Nhi Pederson, Stephen Lardelli, Michael Brain transcriptome analysis of a familial Alzheimer’s disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production |
title | Brain transcriptome analysis of a familial Alzheimer’s disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production |
title_full | Brain transcriptome analysis of a familial Alzheimer’s disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production |
title_fullStr | Brain transcriptome analysis of a familial Alzheimer’s disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production |
title_full_unstemmed | Brain transcriptome analysis of a familial Alzheimer’s disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production |
title_short | Brain transcriptome analysis of a familial Alzheimer’s disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production |
title_sort | brain transcriptome analysis of a familial alzheimer’s disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production |
topic | Micro Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500017/ https://www.ncbi.nlm.nih.gov/pubmed/31053140 http://dx.doi.org/10.1186/s13041-019-0467-y |
work_keys_str_mv | AT newmanmorgan braintranscriptomeanalysisofafamilialalzheimersdiseaselikemutationinthezebrafishpresenilin1geneimplieseffectsonenergyproduction AT hinnhi braintranscriptomeanalysisofafamilialalzheimersdiseaselikemutationinthezebrafishpresenilin1geneimplieseffectsonenergyproduction AT pedersonstephen braintranscriptomeanalysisofafamilialalzheimersdiseaselikemutationinthezebrafishpresenilin1geneimplieseffectsonenergyproduction AT lardellimichael braintranscriptomeanalysisofafamilialalzheimersdiseaselikemutationinthezebrafishpresenilin1geneimplieseffectsonenergyproduction |