Cargando…
SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
Single-cell RNA-seq data contain a large proportion of zeros for expressed genes. Such dropout events present a fundamental challenge for various types of data analyses. Here, we describe the SCRABBLE algorithm to address this problem. SCRABBLE leverages bulk data as a constraint and reduces unwante...
Autores principales: | Peng, Tao, Zhu, Qin, Yin, Penghang, Tan, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501316/ https://www.ncbi.nlm.nih.gov/pubmed/31060596 http://dx.doi.org/10.1186/s13059-019-1681-8 |
Ejemplares similares
-
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019) -
Modeling group heteroscedasticity in single-cell RNA-seq pseudo-bulk data
por: You, Yue, et al.
Publicado: (2023) -
Prime-seq, efficient and powerful bulk RNA sequencing
por: Janjic, Aleksandar, et al.
Publicado: (2022) -
netSmooth: Network-smoothing based imputation for single cell RNA-seq
por: Ronen, Jonathan, et al.
Publicado: (2018) -
EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
por: Teschendorff, Andrew E., et al.
Publicado: (2020)