Cargando…
Identifying immunologically-vulnerable regions of the HCV E2 glycoprotein and broadly neutralizing antibodies that target them
Isolation of broadly neutralizing human monoclonal antibodies (HmAbs) targeting the E2 glycoprotein of Hepatitis C virus (HCV) has sparked hope for effective vaccine development. Nonetheless, escape mutations have been reported. Ideally, a potent vaccine should elicit HmAbs that target regions of E2...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6502829/ https://www.ncbi.nlm.nih.gov/pubmed/31061402 http://dx.doi.org/10.1038/s41467-019-09819-1 |
Sumario: | Isolation of broadly neutralizing human monoclonal antibodies (HmAbs) targeting the E2 glycoprotein of Hepatitis C virus (HCV) has sparked hope for effective vaccine development. Nonetheless, escape mutations have been reported. Ideally, a potent vaccine should elicit HmAbs that target regions of E2 that are most difficult to escape. Here, aimed at addressing this challenge, we develop a predictive in-silico evolutionary model for E2 that identifies one such region, a specific antigenic domain, making it an attractive target for a robust antibody response. Specific broadly neutralizing HmAbs that appear difficult to escape from are also identified. By providing a framework for identifying vulnerable regions of E2 and for assessing the potency of specific antibodies, our results can aid the rational design of an effective prophylactic HCV vaccine. |
---|