Cargando…
Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets
Knowledge of interaction network between different proteins can be a useful tool in cancer therapy. To develop new therapeutic treatments, understanding how these proteins contribute to dysregulated cellular pathways is an important task. PARP1 inhibitors are drugs used in cancer therapy, in particu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505629/ https://www.ncbi.nlm.nih.gov/pubmed/31105872 http://dx.doi.org/10.18632/oncotarget.26812 |
_version_ | 1783416794771357696 |
---|---|
author | Lodovichi, Samuele Mercatanti, Alberto Cervelli, Tiziana Galli, Alvaro |
author_facet | Lodovichi, Samuele Mercatanti, Alberto Cervelli, Tiziana Galli, Alvaro |
author_sort | Lodovichi, Samuele |
collection | PubMed |
description | Knowledge of interaction network between different proteins can be a useful tool in cancer therapy. To develop new therapeutic treatments, understanding how these proteins contribute to dysregulated cellular pathways is an important task. PARP1 inhibitors are drugs used in cancer therapy, in particular where DNA repair is defective. It is crucial to find new candidate interactors of PARP1 as new therapeutic targets in order to increase efficacy of PARP1 inhibitors and expand their clinical utility. By a yeast-based genome wide screening, we previously discovered 90 candidate deletion genes that suppress growth-inhibition phenotype conferred by PARP1 in yeast. Here, we performed an integrated and computational analysis to deeply study these genes. First, we identified which pathways these genes are involved in and putative relations with PARP1 through g:Profiler. Then, we studied mutation pattern and their relation to cancer by interrogating COSMIC and DisGeNET database; finally, we evaluated expression and alteration in several cancers with cBioPortal, and the interaction network with GeneMANIA. We identified 12 genes belonging to PARP1-related pathways. We decided to further validate RIT1, INCENP and PSTA1 in MCF7 breast cancer cells. We found that RIT1 and INCENP affected PARylation and PARP1 protein level more significantly in PARP1 inhibited cells. Furthermore, downregulation of RIT1, INCENP and PSAT1 affected olaparib sensitivity of MCF7 cells. Our study identified candidate genes that could have an effect on PARP inhibition therapy. Moreover, we also confirm that yeast-based screenings could be very helpful to identify novel potential therapy factors. |
format | Online Article Text |
id | pubmed-6505629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-65056292019-05-17 Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets Lodovichi, Samuele Mercatanti, Alberto Cervelli, Tiziana Galli, Alvaro Oncotarget Research Paper Knowledge of interaction network between different proteins can be a useful tool in cancer therapy. To develop new therapeutic treatments, understanding how these proteins contribute to dysregulated cellular pathways is an important task. PARP1 inhibitors are drugs used in cancer therapy, in particular where DNA repair is defective. It is crucial to find new candidate interactors of PARP1 as new therapeutic targets in order to increase efficacy of PARP1 inhibitors and expand their clinical utility. By a yeast-based genome wide screening, we previously discovered 90 candidate deletion genes that suppress growth-inhibition phenotype conferred by PARP1 in yeast. Here, we performed an integrated and computational analysis to deeply study these genes. First, we identified which pathways these genes are involved in and putative relations with PARP1 through g:Profiler. Then, we studied mutation pattern and their relation to cancer by interrogating COSMIC and DisGeNET database; finally, we evaluated expression and alteration in several cancers with cBioPortal, and the interaction network with GeneMANIA. We identified 12 genes belonging to PARP1-related pathways. We decided to further validate RIT1, INCENP and PSTA1 in MCF7 breast cancer cells. We found that RIT1 and INCENP affected PARylation and PARP1 protein level more significantly in PARP1 inhibited cells. Furthermore, downregulation of RIT1, INCENP and PSAT1 affected olaparib sensitivity of MCF7 cells. Our study identified candidate genes that could have an effect on PARP inhibition therapy. Moreover, we also confirm that yeast-based screenings could be very helpful to identify novel potential therapy factors. Impact Journals LLC 2019-04-12 /pmc/articles/PMC6505629/ /pubmed/31105872 http://dx.doi.org/10.18632/oncotarget.26812 Text en Copyright: © 2019 Lodovichi et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Paper Lodovichi, Samuele Mercatanti, Alberto Cervelli, Tiziana Galli, Alvaro Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets |
title | Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets |
title_full | Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets |
title_fullStr | Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets |
title_full_unstemmed | Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets |
title_short | Computational analysis of data from a genome-wide screening identifies new PARP1 functional interactors as potential therapeutic targets |
title_sort | computational analysis of data from a genome-wide screening identifies new parp1 functional interactors as potential therapeutic targets |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6505629/ https://www.ncbi.nlm.nih.gov/pubmed/31105872 http://dx.doi.org/10.18632/oncotarget.26812 |
work_keys_str_mv | AT lodovichisamuele computationalanalysisofdatafromagenomewidescreeningidentifiesnewparp1functionalinteractorsaspotentialtherapeutictargets AT mercatantialberto computationalanalysisofdatafromagenomewidescreeningidentifiesnewparp1functionalinteractorsaspotentialtherapeutictargets AT cervellitiziana computationalanalysisofdatafromagenomewidescreeningidentifiesnewparp1functionalinteractorsaspotentialtherapeutictargets AT gallialvaro computationalanalysisofdatafromagenomewidescreeningidentifiesnewparp1functionalinteractorsaspotentialtherapeutictargets |