Cargando…
Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance
Teixobactin is a new antimicrobial of significant interest. It is active against a number of multidrug-resistant pathogens, including Staphylococcus aureus and Enterococcus faecalis, with no reported mechanisms of teixobactin resistance. However, historically, mechanisms of resistance always exist a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506618/ https://www.ncbi.nlm.nih.gov/pubmed/31068434 http://dx.doi.org/10.1128/mSphere.00228-19 |
_version_ | 1783416889262735360 |
---|---|
author | Darnell, Rachel L. Knottenbelt, Melanie K. Todd Rose, Francesca O. Monk, Ian R. Stinear, Timothy P. Cook, Gregory M. |
author_facet | Darnell, Rachel L. Knottenbelt, Melanie K. Todd Rose, Francesca O. Monk, Ian R. Stinear, Timothy P. Cook, Gregory M. |
author_sort | Darnell, Rachel L. |
collection | PubMed |
description | Teixobactin is a new antimicrobial of significant interest. It is active against a number of multidrug-resistant pathogens, including Staphylococcus aureus and Enterococcus faecalis, with no reported mechanisms of teixobactin resistance. However, historically, mechanisms of resistance always exist and arise upon introduction of a new antimicrobial into a clinical setting. Therefore, for teixobactin to remain effective long term, we need to understand how mechanisms of resistance could develop. Here we demonstrate that E. faecalis shows a remarkable intrinsic tolerance to high concentrations of teixobactin. This is of critical importance, as antimicrobial tolerance has been shown to precede the development of antimicrobial resistance. To identify potential pathways responsible for this tolerance, we determined the genomewide expression profile of E. faecalis strain JH2-2 in response to teixobactin using RNA sequencing. A total of 573 genes were differentially expressed (2.0-fold log(2) change in expression) in response to teixobactin, with genes involved in cell wall biogenesis and division and transport/binding being among those that were the most upregulated. Comparative analyses of E. faecalis cell wall-targeting antimicrobial transcriptomes identified CroRS, LiaRS, and YclRK to be important two-component regulators of antimicrobial-mediated stress. Further investigation of CroRS demonstrated that deletion of croRS abolished tolerance to teixobactin and to other cell wall-targeting antimicrobials. This highlights the crucial role of CroRS in controlling the molecular response to teixobactin. IMPORTANCE Teixobactin is a new antimicrobial with no known mechanisms of resistance. Understanding how resistance could develop will be crucial to the success and longevity of teixobactin as a new potent antimicrobial. Antimicrobial tolerance has been shown to facilitate the development of resistance, and we show that E. faecalis is intrinsically tolerant to teixobactin at high concentrations. We subsequently chose E. faecalis as a model to elucidate the molecular mechanism underpinning teixobactin tolerance and how this may contribute to the development of teixobactin resistance. |
format | Online Article Text |
id | pubmed-6506618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-65066182019-05-16 Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance Darnell, Rachel L. Knottenbelt, Melanie K. Todd Rose, Francesca O. Monk, Ian R. Stinear, Timothy P. Cook, Gregory M. mSphere Research Article Teixobactin is a new antimicrobial of significant interest. It is active against a number of multidrug-resistant pathogens, including Staphylococcus aureus and Enterococcus faecalis, with no reported mechanisms of teixobactin resistance. However, historically, mechanisms of resistance always exist and arise upon introduction of a new antimicrobial into a clinical setting. Therefore, for teixobactin to remain effective long term, we need to understand how mechanisms of resistance could develop. Here we demonstrate that E. faecalis shows a remarkable intrinsic tolerance to high concentrations of teixobactin. This is of critical importance, as antimicrobial tolerance has been shown to precede the development of antimicrobial resistance. To identify potential pathways responsible for this tolerance, we determined the genomewide expression profile of E. faecalis strain JH2-2 in response to teixobactin using RNA sequencing. A total of 573 genes were differentially expressed (2.0-fold log(2) change in expression) in response to teixobactin, with genes involved in cell wall biogenesis and division and transport/binding being among those that were the most upregulated. Comparative analyses of E. faecalis cell wall-targeting antimicrobial transcriptomes identified CroRS, LiaRS, and YclRK to be important two-component regulators of antimicrobial-mediated stress. Further investigation of CroRS demonstrated that deletion of croRS abolished tolerance to teixobactin and to other cell wall-targeting antimicrobials. This highlights the crucial role of CroRS in controlling the molecular response to teixobactin. IMPORTANCE Teixobactin is a new antimicrobial with no known mechanisms of resistance. Understanding how resistance could develop will be crucial to the success and longevity of teixobactin as a new potent antimicrobial. Antimicrobial tolerance has been shown to facilitate the development of resistance, and we show that E. faecalis is intrinsically tolerant to teixobactin at high concentrations. We subsequently chose E. faecalis as a model to elucidate the molecular mechanism underpinning teixobactin tolerance and how this may contribute to the development of teixobactin resistance. American Society for Microbiology 2019-05-08 /pmc/articles/PMC6506618/ /pubmed/31068434 http://dx.doi.org/10.1128/mSphere.00228-19 Text en Copyright © 2019 Darnell et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Darnell, Rachel L. Knottenbelt, Melanie K. Todd Rose, Francesca O. Monk, Ian R. Stinear, Timothy P. Cook, Gregory M. Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance |
title | Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance |
title_full | Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance |
title_fullStr | Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance |
title_full_unstemmed | Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance |
title_short | Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance |
title_sort | genomewide profiling of the enterococcus faecalis transcriptional response to teixobactin reveals crors as an essential regulator of antimicrobial tolerance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506618/ https://www.ncbi.nlm.nih.gov/pubmed/31068434 http://dx.doi.org/10.1128/mSphere.00228-19 |
work_keys_str_mv | AT darnellrachell genomewideprofilingoftheenterococcusfaecalistranscriptionalresponsetoteixobactinrevealscrorsasanessentialregulatorofantimicrobialtolerance AT knottenbeltmelaniek genomewideprofilingoftheenterococcusfaecalistranscriptionalresponsetoteixobactinrevealscrorsasanessentialregulatorofantimicrobialtolerance AT toddrosefrancescao genomewideprofilingoftheenterococcusfaecalistranscriptionalresponsetoteixobactinrevealscrorsasanessentialregulatorofantimicrobialtolerance AT monkianr genomewideprofilingoftheenterococcusfaecalistranscriptionalresponsetoteixobactinrevealscrorsasanessentialregulatorofantimicrobialtolerance AT stineartimothyp genomewideprofilingoftheenterococcusfaecalistranscriptionalresponsetoteixobactinrevealscrorsasanessentialregulatorofantimicrobialtolerance AT cookgregorym genomewideprofilingoftheenterococcusfaecalistranscriptionalresponsetoteixobactinrevealscrorsasanessentialregulatorofantimicrobialtolerance |