Cargando…

Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics

The cellular responses induced by mitochondrial dysfunction remain elusive. Intrigued by the lack of almost any glomerular phenotype in patients with profound renal ischemia, we comprehensively investigated the primary sources of energy of glomerular podocytes. Combining functional measurements of o...

Descripción completa

Detalles Bibliográficos
Autores principales: Brinkkoetter, Paul T., Bork, Tillmann, Salou, Sarah, Liang, Wei, Mizi, Athanasia, Özel, Cem, Koehler, Sybille, Hagmann, H. Henning, Ising, Christina, Kuczkowski, Alexander, Schnyder, Svenia, Abed, Ahmed, Schermer, Bernhard, Benzing, Thomas, Kretz, Oliver, Puelles, Victor G., Lagies, Simon, Schlimpert, Manuel, Kammerer, Bernd, Handschin, Christoph, Schell, Christoph, Huber, Tobias B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506687/
https://www.ncbi.nlm.nih.gov/pubmed/31042480
http://dx.doi.org/10.1016/j.celrep.2019.04.012
_version_ 1783416898660073472
author Brinkkoetter, Paul T.
Bork, Tillmann
Salou, Sarah
Liang, Wei
Mizi, Athanasia
Özel, Cem
Koehler, Sybille
Hagmann, H. Henning
Ising, Christina
Kuczkowski, Alexander
Schnyder, Svenia
Abed, Ahmed
Schermer, Bernhard
Benzing, Thomas
Kretz, Oliver
Puelles, Victor G.
Lagies, Simon
Schlimpert, Manuel
Kammerer, Bernd
Handschin, Christoph
Schell, Christoph
Huber, Tobias B.
author_facet Brinkkoetter, Paul T.
Bork, Tillmann
Salou, Sarah
Liang, Wei
Mizi, Athanasia
Özel, Cem
Koehler, Sybille
Hagmann, H. Henning
Ising, Christina
Kuczkowski, Alexander
Schnyder, Svenia
Abed, Ahmed
Schermer, Bernhard
Benzing, Thomas
Kretz, Oliver
Puelles, Victor G.
Lagies, Simon
Schlimpert, Manuel
Kammerer, Bernd
Handschin, Christoph
Schell, Christoph
Huber, Tobias B.
author_sort Brinkkoetter, Paul T.
collection PubMed
description The cellular responses induced by mitochondrial dysfunction remain elusive. Intrigued by the lack of almost any glomerular phenotype in patients with profound renal ischemia, we comprehensively investigated the primary sources of energy of glomerular podocytes. Combining functional measurements of oxygen consumption rates, glomerular metabolite analysis, and determination of mitochondrial density of podocytes in vivo, we demonstrate that anaerobic glycolysis and fermentation of glucose to lactate represent the key energy source of podocytes. Under physiological conditions, we could detect neither a developmental nor late-onset pathological phenotype in podocytes with impaired mitochondrial biogenesis machinery, defective mitochondrial fusion-fission apparatus, or reduced mtDNA stability and transcription caused by podocyte-specific deletion of Pgc-1α, Drp1, or Tfam, respectively. Anaerobic glycolysis represents the predominant metabolic pathway of podocytes. These findings offer a strategy to therapeutically interfere with the enhanced podocyte metabolism in various progressive kidney diseases, such as diabetic nephropathy or focal segmental glomerulosclerosis (FSGS).
format Online
Article
Text
id pubmed-6506687
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-65066872019-05-13 Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics Brinkkoetter, Paul T. Bork, Tillmann Salou, Sarah Liang, Wei Mizi, Athanasia Özel, Cem Koehler, Sybille Hagmann, H. Henning Ising, Christina Kuczkowski, Alexander Schnyder, Svenia Abed, Ahmed Schermer, Bernhard Benzing, Thomas Kretz, Oliver Puelles, Victor G. Lagies, Simon Schlimpert, Manuel Kammerer, Bernd Handschin, Christoph Schell, Christoph Huber, Tobias B. Cell Rep Article The cellular responses induced by mitochondrial dysfunction remain elusive. Intrigued by the lack of almost any glomerular phenotype in patients with profound renal ischemia, we comprehensively investigated the primary sources of energy of glomerular podocytes. Combining functional measurements of oxygen consumption rates, glomerular metabolite analysis, and determination of mitochondrial density of podocytes in vivo, we demonstrate that anaerobic glycolysis and fermentation of glucose to lactate represent the key energy source of podocytes. Under physiological conditions, we could detect neither a developmental nor late-onset pathological phenotype in podocytes with impaired mitochondrial biogenesis machinery, defective mitochondrial fusion-fission apparatus, or reduced mtDNA stability and transcription caused by podocyte-specific deletion of Pgc-1α, Drp1, or Tfam, respectively. Anaerobic glycolysis represents the predominant metabolic pathway of podocytes. These findings offer a strategy to therapeutically interfere with the enhanced podocyte metabolism in various progressive kidney diseases, such as diabetic nephropathy or focal segmental glomerulosclerosis (FSGS). Cell Press 2019-04-30 /pmc/articles/PMC6506687/ /pubmed/31042480 http://dx.doi.org/10.1016/j.celrep.2019.04.012 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Brinkkoetter, Paul T.
Bork, Tillmann
Salou, Sarah
Liang, Wei
Mizi, Athanasia
Özel, Cem
Koehler, Sybille
Hagmann, H. Henning
Ising, Christina
Kuczkowski, Alexander
Schnyder, Svenia
Abed, Ahmed
Schermer, Bernhard
Benzing, Thomas
Kretz, Oliver
Puelles, Victor G.
Lagies, Simon
Schlimpert, Manuel
Kammerer, Bernd
Handschin, Christoph
Schell, Christoph
Huber, Tobias B.
Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics
title Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics
title_full Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics
title_fullStr Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics
title_full_unstemmed Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics
title_short Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics
title_sort anaerobic glycolysis maintains the glomerular filtration barrier independent of mitochondrial metabolism and dynamics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506687/
https://www.ncbi.nlm.nih.gov/pubmed/31042480
http://dx.doi.org/10.1016/j.celrep.2019.04.012
work_keys_str_mv AT brinkkoetterpault anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT borktillmann anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT salousarah anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT liangwei anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT miziathanasia anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT ozelcem anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT koehlersybille anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT hagmannhhenning anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT isingchristina anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT kuczkowskialexander anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT schnydersvenia anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT abedahmed anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT schermerbernhard anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT benzingthomas anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT kretzoliver anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT puellesvictorg anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT lagiessimon anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT schlimpertmanuel anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT kammererbernd anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT handschinchristoph anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT schellchristoph anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics
AT hubertobiasb anaerobicglycolysismaintainstheglomerularfiltrationbarrierindependentofmitochondrialmetabolismanddynamics