Cargando…
NanoDJ: a Dockerized Jupyter notebook for interactive Oxford Nanopore MinION sequence manipulation and genome assembly
BACKGROUND: The Oxford Nanopore Technologies (ONT) MinION portable sequencer makes it possible to use cutting-edge genomic technologies in the field and the academic classroom. RESULTS: We present NanoDJ, a Jupyter notebook integration of tools for simplified manipulation and assembly of DNA sequenc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6509807/ https://www.ncbi.nlm.nih.gov/pubmed/31072312 http://dx.doi.org/10.1186/s12859-019-2860-z |
Sumario: | BACKGROUND: The Oxford Nanopore Technologies (ONT) MinION portable sequencer makes it possible to use cutting-edge genomic technologies in the field and the academic classroom. RESULTS: We present NanoDJ, a Jupyter notebook integration of tools for simplified manipulation and assembly of DNA sequences produced by ONT devices. It integrates basecalling, read trimming and quality control, simulation and plotting routines with a variety of widely used aligners and assemblers, including procedures for hybrid assembly. CONCLUSIONS: With the use of Jupyter-facilitated access to self-explanatory contents of applications and the interactive visualization of results, as well as by its distribution into a Docker software container, NanoDJ is aimed to simplify and make more reproducible ONT DNA sequence analysis. The NanoDJ package code, documentation and installation instructions are freely available at https://github.com/genomicsITER/NanoDJ. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-019-2860-z) contains supplementary material, which is available to authorized users. |
---|