Cargando…
The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity
Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511015/ https://www.ncbi.nlm.nih.gov/pubmed/31019074 http://dx.doi.org/10.1073/pnas.1814999116 |
_version_ | 1783417509130534912 |
---|---|
author | Barnes, Christopher O. Wu, Ying Song, Jinhu Lin, Guowu Baxter, Elizabeth L. Brewster, Aaron S. Nagarajan, V. Holmes, Andrew Soltis, S. Michael Sauter, Nicholas K. Ahn, Jinwoo Cohen, Aina E. Calero, Guillermo |
author_facet | Barnes, Christopher O. Wu, Ying Song, Jinhu Lin, Guowu Baxter, Elizabeth L. Brewster, Aaron S. Nagarajan, V. Holmes, Andrew Soltis, S. Michael Sauter, Nicholas K. Ahn, Jinwoo Cohen, Aina E. Calero, Guillermo |
author_sort | Barnes, Christopher O. |
collection | PubMed |
description | Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson–Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally “opening” a tyrosine gate allowing enhanced substrate binding. |
format | Online Article Text |
id | pubmed-6511015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-65110152019-05-23 The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity Barnes, Christopher O. Wu, Ying Song, Jinhu Lin, Guowu Baxter, Elizabeth L. Brewster, Aaron S. Nagarajan, V. Holmes, Andrew Soltis, S. Michael Sauter, Nicholas K. Ahn, Jinwoo Cohen, Aina E. Calero, Guillermo Proc Natl Acad Sci U S A PNAS Plus Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson–Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally “opening” a tyrosine gate allowing enhanced substrate binding. National Academy of Sciences 2019-05-07 2019-04-24 /pmc/articles/PMC6511015/ /pubmed/31019074 http://dx.doi.org/10.1073/pnas.1814999116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | PNAS Plus Barnes, Christopher O. Wu, Ying Song, Jinhu Lin, Guowu Baxter, Elizabeth L. Brewster, Aaron S. Nagarajan, V. Holmes, Andrew Soltis, S. Michael Sauter, Nicholas K. Ahn, Jinwoo Cohen, Aina E. Calero, Guillermo The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity |
title | The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity |
title_full | The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity |
title_fullStr | The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity |
title_full_unstemmed | The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity |
title_short | The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity |
title_sort | crystal structure of dgtpase reveals the molecular basis of dgtp selectivity |
topic | PNAS Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511015/ https://www.ncbi.nlm.nih.gov/pubmed/31019074 http://dx.doi.org/10.1073/pnas.1814999116 |
work_keys_str_mv | AT barneschristophero thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT wuying thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT songjinhu thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT linguowu thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT baxterelizabethl thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT brewsteraarons thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT nagarajanv thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT holmesandrew thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT soltissmichael thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT sauternicholask thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT ahnjinwoo thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT cohenainae thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT caleroguillermo thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT barneschristophero crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT wuying crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT songjinhu crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT linguowu crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT baxterelizabethl crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT brewsteraarons crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT nagarajanv crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT holmesandrew crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT soltissmichael crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT sauternicholask crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT ahnjinwoo crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT cohenainae crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity AT caleroguillermo crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity |