Cargando…

The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity

Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse...

Descripción completa

Detalles Bibliográficos
Autores principales: Barnes, Christopher O., Wu, Ying, Song, Jinhu, Lin, Guowu, Baxter, Elizabeth L., Brewster, Aaron S., Nagarajan, V., Holmes, Andrew, Soltis, S. Michael, Sauter, Nicholas K., Ahn, Jinwoo, Cohen, Aina E., Calero, Guillermo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511015/
https://www.ncbi.nlm.nih.gov/pubmed/31019074
http://dx.doi.org/10.1073/pnas.1814999116
_version_ 1783417509130534912
author Barnes, Christopher O.
Wu, Ying
Song, Jinhu
Lin, Guowu
Baxter, Elizabeth L.
Brewster, Aaron S.
Nagarajan, V.
Holmes, Andrew
Soltis, S. Michael
Sauter, Nicholas K.
Ahn, Jinwoo
Cohen, Aina E.
Calero, Guillermo
author_facet Barnes, Christopher O.
Wu, Ying
Song, Jinhu
Lin, Guowu
Baxter, Elizabeth L.
Brewster, Aaron S.
Nagarajan, V.
Holmes, Andrew
Soltis, S. Michael
Sauter, Nicholas K.
Ahn, Jinwoo
Cohen, Aina E.
Calero, Guillermo
author_sort Barnes, Christopher O.
collection PubMed
description Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson–Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally “opening” a tyrosine gate allowing enhanced substrate binding.
format Online
Article
Text
id pubmed-6511015
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-65110152019-05-23 The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity Barnes, Christopher O. Wu, Ying Song, Jinhu Lin, Guowu Baxter, Elizabeth L. Brewster, Aaron S. Nagarajan, V. Holmes, Andrew Soltis, S. Michael Sauter, Nicholas K. Ahn, Jinwoo Cohen, Aina E. Calero, Guillermo Proc Natl Acad Sci U S A PNAS Plus Deoxynucleotide triphosphohydrolases (dNTPases) play a critical role in cellular survival and DNA replication through the proper maintenance of cellular dNTP pools. While the vast majority of these enzymes display broad activity toward canonical dNTPs, such as the dNTPase SAMHD1 that blocks reverse transcription of retroviruses in macrophages by maintaining dNTP pools at low levels, Escherichia coli (Ec)-dGTPase is the only known enzyme that specifically hydrolyzes dGTP. However, the mechanism behind dGTP selectivity is unclear. Here we present the free-, ligand (dGTP)- and inhibitor (GTP)-bound structures of hexameric Ec-dGTPase, including an X-ray free-electron laser structure of the free Ec-dGTPase enzyme to 3.2 Å. To obtain this structure, we developed a method that applied UV-fluorescence microscopy, video analysis, and highly automated goniometer-based instrumentation to map and rapidly position individual crystals randomly located on fixed target holders, resulting in the highest indexing rates observed for a serial femtosecond crystallography experiment. Our structures show a highly dynamic active site where conformational changes are coupled to substrate (dGTP), but not inhibitor binding, since GTP locks dGTPase in its apo- form. Moreover, despite no sequence homology, Ec-dGTPase and SAMHD1 share similar active-site and HD motif architectures; however, Ec-dGTPase residues at the end of the substrate-binding pocket mimic Watson–Crick interactions providing guanine base specificity, while a 7-Å cleft separates SAMHD1 residues from dNTP bases, abolishing nucleotide-type discrimination. Furthermore, the structures shed light on the mechanism by which long distance binding (25 Å) of single-stranded DNA in an allosteric site primes the active site by conformationally “opening” a tyrosine gate allowing enhanced substrate binding. National Academy of Sciences 2019-05-07 2019-04-24 /pmc/articles/PMC6511015/ /pubmed/31019074 http://dx.doi.org/10.1073/pnas.1814999116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle PNAS Plus
Barnes, Christopher O.
Wu, Ying
Song, Jinhu
Lin, Guowu
Baxter, Elizabeth L.
Brewster, Aaron S.
Nagarajan, V.
Holmes, Andrew
Soltis, S. Michael
Sauter, Nicholas K.
Ahn, Jinwoo
Cohen, Aina E.
Calero, Guillermo
The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity
title The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity
title_full The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity
title_fullStr The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity
title_full_unstemmed The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity
title_short The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity
title_sort crystal structure of dgtpase reveals the molecular basis of dgtp selectivity
topic PNAS Plus
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511015/
https://www.ncbi.nlm.nih.gov/pubmed/31019074
http://dx.doi.org/10.1073/pnas.1814999116
work_keys_str_mv AT barneschristophero thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT wuying thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT songjinhu thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT linguowu thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT baxterelizabethl thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT brewsteraarons thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT nagarajanv thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT holmesandrew thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT soltissmichael thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT sauternicholask thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT ahnjinwoo thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT cohenainae thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT caleroguillermo thecrystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT barneschristophero crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT wuying crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT songjinhu crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT linguowu crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT baxterelizabethl crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT brewsteraarons crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT nagarajanv crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT holmesandrew crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT soltissmichael crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT sauternicholask crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT ahnjinwoo crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT cohenainae crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity
AT caleroguillermo crystalstructureofdgtpaserevealsthemolecularbasisofdgtpselectivity