Cargando…
Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets
We present a novel approach to identify human microRNA (miRNA) regulatory modules (mRNA targets and relevant cell conditions) by biclustering a large collection of mRNA fold-change data for sequence-specific targets. Bicluster targets were assessed using validated messenger RNA (mRNA) targets and ex...
Autores principales: | Yoon, Sora, Nguyen, Hai C T, Jo, Woobeen, Kim, Jinhwan, Chi, Sang-Mun, Park, Jiyoung, Kim, Seon-Young, Nam, Dougu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511842/ https://www.ncbi.nlm.nih.gov/pubmed/30820547 http://dx.doi.org/10.1093/nar/gkz139 |
Ejemplares similares
-
Efficient pathway enrichment and network analysis of GWAS summary data using GSA-SNP2
por: Yoon, Sora, et al.
Publicado: (2018) -
Bi-Force: large-scale bicluster editing and its application to gene
expression data biclustering
por: Sun, Peng, et al.
Publicado: (2014) -
QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
por: Li, Guojun, et al.
Publicado: (2009) -
GScluster: network-weighted gene-set clustering analysis
por: Yoon, Sora, et al.
Publicado: (2019) -
Discovery and visualization of miRNA–mRNA functional modules within integrated data using bicluster analysis
por: Bryan, Kenneth, et al.
Publicado: (2014)