Cargando…
Classification of Visual and Non-visual Learners Using Electroencephalographic Alpha and Gamma Activities
This study analyzes the learning styles of subjects based on their electroencephalo-graphy (EEG) signals. The goal is to identify how the EEG features of a visual learner differ from those of a non-visual learner. The idea is to measure the students’ EEGs during the resting states (eyes open and eye...
Autores principales: | Jawed, Soyiba, Amin, Hafeez Ullah, Malik, Aamir Saeed, Faye, Ibrahima |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513874/ https://www.ncbi.nlm.nih.gov/pubmed/31133829 http://dx.doi.org/10.3389/fnbeh.2019.00086 |
Ejemplares similares
-
Hemispheric Asymmetries in Electroencephalogram Oscillations for Long-Term Memory Retrieval in Healthy Individuals
por: Jawed, Soyiba, et al.
Publicado: (2020) -
Single-trial extraction of event-related potentials (ERPs) and classification of visual stimuli by ensemble use of discrete wavelet transform with Huffman coding and machine learning techniques
por: Amin, Hafeez Ullah, et al.
Publicado: (2023) -
Classification of EEG Signals Based on Pattern Recognition Approach
por: Amin, Hafeez Ullah, et al.
Publicado: (2017) -
Dissociable Electroencephalograph Correlates of Visual Awareness and Feature-Based Attention
por: Chen, Yifan, et al.
Publicado: (2017) -
State-Dependent Modulation of Visual Evoked Potentials in a Rodent Genetic Model of Electroencephalographic Instability
por: Grønli, Janne, et al.
Publicado: (2018)