Cargando…

RGB-D-Based Pose Estimation of Workpieces with Semantic Segmentation and Point Cloud Registration

As an important part of a factory’s automated production line, industrial robots can perform a variety of tasks by integrating external sensors. Among these tasks, grasping scattered workpieces on the industrial assembly line has always been a prominent and difficult point in robot manipulation rese...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Hui, Chen, Guodong, Wang, Zhenhua, Sun, Lining, Su, Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515205/
https://www.ncbi.nlm.nih.gov/pubmed/31010151
http://dx.doi.org/10.3390/s19081873
Descripción
Sumario:As an important part of a factory’s automated production line, industrial robots can perform a variety of tasks by integrating external sensors. Among these tasks, grasping scattered workpieces on the industrial assembly line has always been a prominent and difficult point in robot manipulation research. By using RGB-D (color and depth) information, we propose an efficient and practical solution that fuses the approaches of semantic segmentation and point cloud registration to perform object recognition and pose estimation. Different from objects in an indoor environment, the characteristics of the workpiece are relatively simple; thus, we create and label an RGB image dataset from a variety of industrial scenarios and train the modified FCN (Fully Convolutional Network) on a homemade dataset to infer the semantic segmentation results of the input images. Then, we determine the point cloud of the workpieces by incorporating the depth information to estimate the real-time pose of the workpieces. To evaluate the accuracy of the solution, we propose a novel pose error evaluation method based on the robot vision system. This method does not rely on expensive measuring equipment and can also obtain accurate evaluation results. In an industrial scenario, our solution has a rotation error less than two degrees and a translation error < 10 mm.