Cargando…

Polymer coil–globule phase transition is a universal folding principle of Drosophila epigenetic domains

BACKGROUND: Localized functional domains within chromosomes, known as topologically associating domains (TADs), have been recently highlighted. In Drosophila, TADs are biochemically defined by epigenetic marks, this suggesting that the 3D arrangement may be the “missing link” between epigenetics and...

Descripción completa

Detalles Bibliográficos
Autores principales: Lesage, Antony, Dahirel, Vincent, Victor, Jean-Marc, Barbi, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515630/
https://www.ncbi.nlm.nih.gov/pubmed/31084607
http://dx.doi.org/10.1186/s13072-019-0269-6
Descripción
Sumario:BACKGROUND: Localized functional domains within chromosomes, known as topologically associating domains (TADs), have been recently highlighted. In Drosophila, TADs are biochemically defined by epigenetic marks, this suggesting that the 3D arrangement may be the “missing link” between epigenetics and gene activity. Recent observations (Boettiger et al. in Nature 529(7586):418–422, 2016) provide access to structural features of these domains with unprecedented resolution thanks to super-resolution experiments. In particular, they give access to the distribution of the radii of gyration for domains of different linear length and associated with different transcriptional activity states: active, inactive or repressed. Intriguingly, the observed scaling laws lack consistent interpretation in polymer physics. RESULTS: We develop a new methodology conceived to extract the best information from such super-resolution data by exploiting the whole distribution of gyration radii, and to place these experimental results on a theoretical framework. We show that the experimental data are compatible with the finite-size behavior of a self-attracting polymer. The same generic polymer model leads to quantitative differences between active, inactive and repressed domains. Active domains behave as pure polymer coils, while inactive and repressed domains both lie at the coil–globule crossover. For the first time, the “color-specificity” of both the persistence length and the mean interaction energy are estimated, leading to important differences between epigenetic states. CONCLUSION: These results point toward a crucial role of criticality to enhance the system responsivity, resulting in both energy transitions and structural rearrangements. We get strong indications that epigenetically induced changes in nucleosome–nucleosome interaction can cause chromatin to shift between different activity states. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13072-019-0269-6) contains supplementary material, which is available to authorized users.