Cargando…
Dynamin‐like protein 1 cleavage by calpain in Alzheimer’s disease
Abnormal mitochondrial dynamics contributes to mitochondrial dysfunction in Alzheimer's disease (AD), yet the underlying mechanism remains elusive. In the current study, we reported that DLP1, the key mitochondrial fission GTPase, is a substrate of calpain which produced specific N‐terminal DLP...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516178/ https://www.ncbi.nlm.nih.gov/pubmed/30767411 http://dx.doi.org/10.1111/acel.12912 |
_version_ | 1783418207532482560 |
---|---|
author | Jiang, Sirui Shao, Changjuan Tang, Fangqiang Wang, Wenzhang Zhu, Xiongwei |
author_facet | Jiang, Sirui Shao, Changjuan Tang, Fangqiang Wang, Wenzhang Zhu, Xiongwei |
author_sort | Jiang, Sirui |
collection | PubMed |
description | Abnormal mitochondrial dynamics contributes to mitochondrial dysfunction in Alzheimer's disease (AD), yet the underlying mechanism remains elusive. In the current study, we reported that DLP1, the key mitochondrial fission GTPase, is a substrate of calpain which produced specific N‐terminal DLP1 cleavage fragments. In addition, various AD‐related insults such as exposure to glutamate, soluble amyloid‐β oligomers, or reagents inducing tau hyperphosphorylation (i.e., okadaic acid) led to calpain‐dependent cleavage of DLP1 in primary cortical neurons. DLP1 cleavage fragments were found in cortical neurons of CRND8 APP transgenic mice which can be inhibited by calpeptin, a potent small molecule inhibitor of calpain. Importantly, these N‐terminal DLP1 fragments were also present in the human brains, and the levels of both full‐length and N‐terminal fragments of DLP1 and the full‐length and calpain‐specific cleavage product of spectrin were significantly reduced in AD brains along with significantly increased calpain. These results suggest that calpain‐dependent cleavage is at least one of the posttranscriptional mechanisms that contribute to the dysregulation of mitochondrial dynamics in AD. |
format | Online Article Text |
id | pubmed-6516178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65161782019-06-01 Dynamin‐like protein 1 cleavage by calpain in Alzheimer’s disease Jiang, Sirui Shao, Changjuan Tang, Fangqiang Wang, Wenzhang Zhu, Xiongwei Aging Cell Original Papers Abnormal mitochondrial dynamics contributes to mitochondrial dysfunction in Alzheimer's disease (AD), yet the underlying mechanism remains elusive. In the current study, we reported that DLP1, the key mitochondrial fission GTPase, is a substrate of calpain which produced specific N‐terminal DLP1 cleavage fragments. In addition, various AD‐related insults such as exposure to glutamate, soluble amyloid‐β oligomers, or reagents inducing tau hyperphosphorylation (i.e., okadaic acid) led to calpain‐dependent cleavage of DLP1 in primary cortical neurons. DLP1 cleavage fragments were found in cortical neurons of CRND8 APP transgenic mice which can be inhibited by calpeptin, a potent small molecule inhibitor of calpain. Importantly, these N‐terminal DLP1 fragments were also present in the human brains, and the levels of both full‐length and N‐terminal fragments of DLP1 and the full‐length and calpain‐specific cleavage product of spectrin were significantly reduced in AD brains along with significantly increased calpain. These results suggest that calpain‐dependent cleavage is at least one of the posttranscriptional mechanisms that contribute to the dysregulation of mitochondrial dynamics in AD. John Wiley and Sons Inc. 2019-02-14 2019-06 /pmc/articles/PMC6516178/ /pubmed/30767411 http://dx.doi.org/10.1111/acel.12912 Text en © 2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Jiang, Sirui Shao, Changjuan Tang, Fangqiang Wang, Wenzhang Zhu, Xiongwei Dynamin‐like protein 1 cleavage by calpain in Alzheimer’s disease |
title | Dynamin‐like protein 1 cleavage by calpain in Alzheimer’s disease |
title_full | Dynamin‐like protein 1 cleavage by calpain in Alzheimer’s disease |
title_fullStr | Dynamin‐like protein 1 cleavage by calpain in Alzheimer’s disease |
title_full_unstemmed | Dynamin‐like protein 1 cleavage by calpain in Alzheimer’s disease |
title_short | Dynamin‐like protein 1 cleavage by calpain in Alzheimer’s disease |
title_sort | dynamin‐like protein 1 cleavage by calpain in alzheimer’s disease |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6516178/ https://www.ncbi.nlm.nih.gov/pubmed/30767411 http://dx.doi.org/10.1111/acel.12912 |
work_keys_str_mv | AT jiangsirui dynaminlikeprotein1cleavagebycalpaininalzheimersdisease AT shaochangjuan dynaminlikeprotein1cleavagebycalpaininalzheimersdisease AT tangfangqiang dynaminlikeprotein1cleavagebycalpaininalzheimersdisease AT wangwenzhang dynaminlikeprotein1cleavagebycalpaininalzheimersdisease AT zhuxiongwei dynaminlikeprotein1cleavagebycalpaininalzheimersdisease |