Cargando…

Optimization of tris(2-carboxyethyl) phosphine reduction conditions for fast analysis of total biothiols in mouse serum samples

In this study, we investigated suitable conditions for the reduction of disulfides in mouse serum samples by tris(2-carboxyethyl) phosphine (TCEP) for fast analysis of total biothiols. Disulfides were reduced with TCEP, and then, thiols were derivatized with the fluorogenic reagent, ammonium 7-fluor...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Chunfang, Isokawa, Muneki, Funatsu, Takashi, Tsunoda, Makoto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517333/
https://www.ncbi.nlm.nih.gov/pubmed/31193090
http://dx.doi.org/10.1016/j.heliyon.2019.e01598
Descripción
Sumario:In this study, we investigated suitable conditions for the reduction of disulfides in mouse serum samples by tris(2-carboxyethyl) phosphine (TCEP) for fast analysis of total biothiols. Disulfides were reduced with TCEP, and then, thiols were derivatized with the fluorogenic reagent, ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F). Interference peaks on chromatograms of mouse serum samples disappeared when the TCEP reaction was conducted on ice instead of at room temperature, which is used classically. Low-molecular-weight disulfides, such as cystine and glutathione disulfide, were nearly completely reduced by TCEP on ice. Six SBD-biothiols (homocysteine, cysteine, cysteinylglycine, glutathione, γ-glutamylcysteine, and N-acetylcysteine) were separated within 7.5 min on a sulfoalkylbetain-type column (ZIC-HILIC: 150 × 2.1 mm i.d., 3.5 μm), without interference peaks. The developed method showed good linearity and reproducibility, with inter- and intra-day precisions of less than 3%.