Cargando…

LXRα limits TGFβ-dependent hepatocellular carcinoma associated fibroblast differentiation

Transforming growth factor β (TGFβ) is deposited in the extracellular space of diverse tissues. Resident fibroblasts respond to TGFβ and undergo myofibroblastic differentiation during tissue wound healing and cancer progression. Cancer-associated fibroblasts (CAFs) communicate with tumor cells durin...

Descripción completa

Detalles Bibliográficos
Autores principales: Morén, Anita, Bellomo, Claudia, Tsubakihara, Yutaro, Kardassis, Dimitris, Mikulits, Wolfgang, Heldin, Carl-Henrik, Moustakas, Aristidis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6522550/
https://www.ncbi.nlm.nih.gov/pubmed/31097694
http://dx.doi.org/10.1038/s41389-019-0140-4
Descripción
Sumario:Transforming growth factor β (TGFβ) is deposited in the extracellular space of diverse tissues. Resident fibroblasts respond to TGFβ and undergo myofibroblastic differentiation during tissue wound healing and cancer progression. Cancer-associated fibroblasts (CAFs) communicate with tumor cells during cancer progression, under the guidance of TGFβ signaling. We report that agonist-activated liver X receptors (LXR) limit the expression of key components of myofibroblast differentiation, including the α-smooth muscle actin (αSMA) gene in liver cancer cells. CAFs derived from hepatocellular carcinoma (HCC) express high αSMA and low LXRα levels, whereas hepatocarcinoma cells exhibit an inverse expression pattern. All hepatoma cells analyzed responded to the LXRα agonist T0901317 by inducing fatty acid synthase (FASN) expression. On the other hand, T0901317 antagonized TGFβ-induced fibroblastic marker responses, such as fibronectin and calponin, in a subset of hepatoma cells and all CAFs analyzed. Mechanistically, LXRα antagonized TGFβ signaling at the transcriptional level. Smad3 and LXRα were recruited to adjacent DNA motifs of the ACTA2 promoter. Upon cloning the human ACTA2 promoter, we confirmed its transcriptional induction by TGFβ stimulation, and LXRα overexpression repressed the promoter activity. Hepatosphere formation by HCC cells was enhanced upon co-culturing with CAFs. T0901317 suppressed the positive effects exerted on hepatosphere growth by CAFs. Taken together, the data suggest that LXRα agonists limit TGFβ-dependent CAF differentiation, potentially limiting primary HCC growth.