Cargando…
Membrane Localization of HspA1A, a Stress Inducible 70-kDa Heat-Shock Protein, Depends on Its Interaction with Intracellular Phosphatidylserine
HspA1A is a cytosolic molecular chaperone essential for cellular homeostasis. HspA1A also localizes at the plasma membrane (PM) of tumor and stressed cells. However, it is currently unknown how this cytosolic protein translocates to the PM. Taking into account that HspA1A interacts with lipids, incl...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523125/ https://www.ncbi.nlm.nih.gov/pubmed/30999671 http://dx.doi.org/10.3390/biom9040152 |
_version_ | 1783419261496066048 |
---|---|
author | Bilog, Andrei D. Smulders, Larissa Oliverio, Ryan Labanieh, Cedra Zapanta, Julianne Stahelin, Robert V. Nikolaidis, Nikolas |
author_facet | Bilog, Andrei D. Smulders, Larissa Oliverio, Ryan Labanieh, Cedra Zapanta, Julianne Stahelin, Robert V. Nikolaidis, Nikolas |
author_sort | Bilog, Andrei D. |
collection | PubMed |
description | HspA1A is a cytosolic molecular chaperone essential for cellular homeostasis. HspA1A also localizes at the plasma membrane (PM) of tumor and stressed cells. However, it is currently unknown how this cytosolic protein translocates to the PM. Taking into account that HspA1A interacts with lipids, including phosphatidylserine (PS), and that lipids recruit proteins to the PM, we hypothesized that the interaction of HspA1A with PS allows the chaperone to localize at the PM. To test this hypothesis, we subjected cells to mild heat-shock and the PM-localized HspA1A was quantified using confocal microscopy and cell surface biotinylation. These experiments revealed that HspA1A’s membrane localization increased during recovery from non-apoptotic heat-shock. Next, we selectively reduced PS targets by overexpressing the C2 domain of lactadherin (Lact-C2), a known PS-biosensor, and determined that HspA1A’s membrane localization was greatly reduced. In contrast, the reduction of PI(4,5)P(2) availability by overexpression of the PLCδ-PH biosensor had minimal effects on HspA1A’s PM-localization. Implementation of a fluorescent PS analog, TopFluor-PS, established that PS co-localizes with HspA1A. Collectively, these results reveal that HspA1A’s PM localization and anchorage depend on its selective interaction with intracellular PS. This discovery institutes PS as a new and dynamic partner in the cellular stress response. |
format | Online Article Text |
id | pubmed-6523125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65231252019-06-03 Membrane Localization of HspA1A, a Stress Inducible 70-kDa Heat-Shock Protein, Depends on Its Interaction with Intracellular Phosphatidylserine Bilog, Andrei D. Smulders, Larissa Oliverio, Ryan Labanieh, Cedra Zapanta, Julianne Stahelin, Robert V. Nikolaidis, Nikolas Biomolecules Article HspA1A is a cytosolic molecular chaperone essential for cellular homeostasis. HspA1A also localizes at the plasma membrane (PM) of tumor and stressed cells. However, it is currently unknown how this cytosolic protein translocates to the PM. Taking into account that HspA1A interacts with lipids, including phosphatidylserine (PS), and that lipids recruit proteins to the PM, we hypothesized that the interaction of HspA1A with PS allows the chaperone to localize at the PM. To test this hypothesis, we subjected cells to mild heat-shock and the PM-localized HspA1A was quantified using confocal microscopy and cell surface biotinylation. These experiments revealed that HspA1A’s membrane localization increased during recovery from non-apoptotic heat-shock. Next, we selectively reduced PS targets by overexpressing the C2 domain of lactadherin (Lact-C2), a known PS-biosensor, and determined that HspA1A’s membrane localization was greatly reduced. In contrast, the reduction of PI(4,5)P(2) availability by overexpression of the PLCδ-PH biosensor had minimal effects on HspA1A’s PM-localization. Implementation of a fluorescent PS analog, TopFluor-PS, established that PS co-localizes with HspA1A. Collectively, these results reveal that HspA1A’s PM localization and anchorage depend on its selective interaction with intracellular PS. This discovery institutes PS as a new and dynamic partner in the cellular stress response. MDPI 2019-04-17 /pmc/articles/PMC6523125/ /pubmed/30999671 http://dx.doi.org/10.3390/biom9040152 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bilog, Andrei D. Smulders, Larissa Oliverio, Ryan Labanieh, Cedra Zapanta, Julianne Stahelin, Robert V. Nikolaidis, Nikolas Membrane Localization of HspA1A, a Stress Inducible 70-kDa Heat-Shock Protein, Depends on Its Interaction with Intracellular Phosphatidylserine |
title | Membrane Localization of HspA1A, a Stress Inducible 70-kDa Heat-Shock Protein, Depends on Its Interaction with Intracellular Phosphatidylserine |
title_full | Membrane Localization of HspA1A, a Stress Inducible 70-kDa Heat-Shock Protein, Depends on Its Interaction with Intracellular Phosphatidylserine |
title_fullStr | Membrane Localization of HspA1A, a Stress Inducible 70-kDa Heat-Shock Protein, Depends on Its Interaction with Intracellular Phosphatidylserine |
title_full_unstemmed | Membrane Localization of HspA1A, a Stress Inducible 70-kDa Heat-Shock Protein, Depends on Its Interaction with Intracellular Phosphatidylserine |
title_short | Membrane Localization of HspA1A, a Stress Inducible 70-kDa Heat-Shock Protein, Depends on Its Interaction with Intracellular Phosphatidylserine |
title_sort | membrane localization of hspa1a, a stress inducible 70-kda heat-shock protein, depends on its interaction with intracellular phosphatidylserine |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523125/ https://www.ncbi.nlm.nih.gov/pubmed/30999671 http://dx.doi.org/10.3390/biom9040152 |
work_keys_str_mv | AT bilogandreid membranelocalizationofhspa1aastressinducible70kdaheatshockproteindependsonitsinteractionwithintracellularphosphatidylserine AT smulderslarissa membranelocalizationofhspa1aastressinducible70kdaheatshockproteindependsonitsinteractionwithintracellularphosphatidylserine AT oliverioryan membranelocalizationofhspa1aastressinducible70kdaheatshockproteindependsonitsinteractionwithintracellularphosphatidylserine AT labaniehcedra membranelocalizationofhspa1aastressinducible70kdaheatshockproteindependsonitsinteractionwithintracellularphosphatidylserine AT zapantajulianne membranelocalizationofhspa1aastressinducible70kdaheatshockproteindependsonitsinteractionwithintracellularphosphatidylserine AT stahelinrobertv membranelocalizationofhspa1aastressinducible70kdaheatshockproteindependsonitsinteractionwithintracellularphosphatidylserine AT nikolaidisnikolas membranelocalizationofhspa1aastressinducible70kdaheatshockproteindependsonitsinteractionwithintracellularphosphatidylserine |