Cargando…

Artificial Neural Network for Response Inference of a Nonvolatile Resistance-Switch Array

An artificial neural network was utilized in the behavior inference of a random crossbar array (10 × 9 or 28 × 27 in size) of nonvolatile binary resistance-switches (in a high resistance state (HRS) or low resistance state (LRS)) in response to a randomly applied voltage array. The employed artifici...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Guhyun, Kornijcuk, Vladimir, Kim, Dohun, Kim, Inho, Hwang, Cheol Seong, Jeong, Doo Seok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523178/
https://www.ncbi.nlm.nih.gov/pubmed/30934793
http://dx.doi.org/10.3390/mi10040219
Descripción
Sumario:An artificial neural network was utilized in the behavior inference of a random crossbar array (10 × 9 or 28 × 27 in size) of nonvolatile binary resistance-switches (in a high resistance state (HRS) or low resistance state (LRS)) in response to a randomly applied voltage array. The employed artificial neural network was a multilayer perceptron (MLP) with leaky rectified linear units. This MLP was trained with 500,000 or 1,000,000 examples. For each example, an input vector consisted of the distribution of resistance states (HRS or LRS) over a crossbar array plus an applied voltage array. That is, for a M × N array where voltages are applied to its M rows, the input vector was M × (N + 1) long. The calculated (correct) current array for each random crossbar array was used as data labels for supervised learning. This attempt was successful such that the correlation coefficient between inferred and correct currents reached 0.9995 for the larger crossbar array. This result highlights MLP that leverages its versatility to capture the quantitative linkage between input and output across the highly nonlinear crossbar array.