Cargando…
Computational Methods for Detection of Differentially Methylated Regions Using Kernel Distance and Scan Statistics
Motivation: Researchers in genomics are increasingly interested in epigenetic factors such as DNA methylation because they play an important role in regulating gene expression without changes in the sequence of DNA. Abnormal DNA methylation is associated with many human diseases. Results: We propose...
Autores principales: | Dunbar, Faith, Xu, Hongyan, Ryu, Duchwan, Ghosh, Santu, Shi, Huidong, George, Varghese |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523914/ https://www.ncbi.nlm.nih.gov/pubmed/31013791 http://dx.doi.org/10.3390/genes10040298 |
Ejemplares similares
-
Detection of Differentially Methylated Regions Using Bayes Factor for Ordinal Group Responses
por: Dunbar, Fengjiao, et al.
Publicado: (2019) -
An introduction to Laplacian spectral distances and kernels: theory, computation, and applications
por: Patanè, Giuseppe, et al.
Publicado: (2017) -
Genotype Value Decomposition: Simple Methods for the Computation of Kernel Statistics
por: Misawa, Kazuharu
Publicado: (2022) -
Kernel score statistic for dependent data
por: Malzahn, Dörthe, et al.
Publicado: (2014) -
Reproducing kernel hilbert spaces in probability and statistics
por: Berlinet, Alain, et al.
Publicado: (2004)