Cargando…
Olfactory Event-Related Potentials and Exhaled Organic Volatile Compounds: The Slow Link Between Olfactory Perception and Breath Metabolic Response. A Pilot Study on Phenylethyl Alcohol and Vaseline Oil
Olfactory processing starts with the breath and elicits neuronal, metabolic and cortical responses. This process can be investigated centrally via the Olfactory Event-Related Potentials (OERPs) and peripherally via exhaled Volatile Organic Compounds (VOCs). Despite this, the relationship between OER...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523942/ https://www.ncbi.nlm.nih.gov/pubmed/30991670 http://dx.doi.org/10.3390/brainsci9040084 |
_version_ | 1783419451407859712 |
---|---|
author | Invitto, Sara Mazzatenta, Andrea |
author_facet | Invitto, Sara Mazzatenta, Andrea |
author_sort | Invitto, Sara |
collection | PubMed |
description | Olfactory processing starts with the breath and elicits neuronal, metabolic and cortical responses. This process can be investigated centrally via the Olfactory Event-Related Potentials (OERPs) and peripherally via exhaled Volatile Organic Compounds (VOCs). Despite this, the relationship between OERPs (i.e., N1 and Late Positive Component LPC) and exhaled VOCs has not been investigated enough. The aim of this research is to study OERPs and VOCs connection to two different stimuli: phenylethyl alcohol (PEA) and Vaseline Oil (VO). Fifteen healthy subjects performed a perceptual olfactory task with PEA as a smell target stimulus and VO as a neutral stimulus. The results suggest that OERPs and VOCs distributions follow the same amplitude trend and that PEA is highly arousing in both psychophysiological measures. PEA shows ampler and faster N1, a component related to the sensorial aspect of the stimulus. The N1 topographic localization is different between PEA and VO: PEA stimulus evokes greater N1 in the left centroparietal site. LPC, a component elicited by the perceptual characteristic of the stimulus, shows faster latency in the Frontal lobe and decreased amplitude in the Central and Parietal lobe elicited by the PEA smell. Moreover, the delayed time between the onset of N1-LPC and the onset of VOCs seems to be about 3 s. This delay could be identified as the internal metabolic time in which the odorous stimulus, once perceived at the cortical level, is metabolized and subsequently exhaled. Furthermore, the VO stimulus does not allocate the attentive, perceptive and metabolic resource as with PEA. |
format | Online Article Text |
id | pubmed-6523942 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-65239422019-06-03 Olfactory Event-Related Potentials and Exhaled Organic Volatile Compounds: The Slow Link Between Olfactory Perception and Breath Metabolic Response. A Pilot Study on Phenylethyl Alcohol and Vaseline Oil Invitto, Sara Mazzatenta, Andrea Brain Sci Article Olfactory processing starts with the breath and elicits neuronal, metabolic and cortical responses. This process can be investigated centrally via the Olfactory Event-Related Potentials (OERPs) and peripherally via exhaled Volatile Organic Compounds (VOCs). Despite this, the relationship between OERPs (i.e., N1 and Late Positive Component LPC) and exhaled VOCs has not been investigated enough. The aim of this research is to study OERPs and VOCs connection to two different stimuli: phenylethyl alcohol (PEA) and Vaseline Oil (VO). Fifteen healthy subjects performed a perceptual olfactory task with PEA as a smell target stimulus and VO as a neutral stimulus. The results suggest that OERPs and VOCs distributions follow the same amplitude trend and that PEA is highly arousing in both psychophysiological measures. PEA shows ampler and faster N1, a component related to the sensorial aspect of the stimulus. The N1 topographic localization is different between PEA and VO: PEA stimulus evokes greater N1 in the left centroparietal site. LPC, a component elicited by the perceptual characteristic of the stimulus, shows faster latency in the Frontal lobe and decreased amplitude in the Central and Parietal lobe elicited by the PEA smell. Moreover, the delayed time between the onset of N1-LPC and the onset of VOCs seems to be about 3 s. This delay could be identified as the internal metabolic time in which the odorous stimulus, once perceived at the cortical level, is metabolized and subsequently exhaled. Furthermore, the VO stimulus does not allocate the attentive, perceptive and metabolic resource as with PEA. MDPI 2019-04-15 /pmc/articles/PMC6523942/ /pubmed/30991670 http://dx.doi.org/10.3390/brainsci9040084 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Invitto, Sara Mazzatenta, Andrea Olfactory Event-Related Potentials and Exhaled Organic Volatile Compounds: The Slow Link Between Olfactory Perception and Breath Metabolic Response. A Pilot Study on Phenylethyl Alcohol and Vaseline Oil |
title | Olfactory Event-Related Potentials and Exhaled Organic Volatile Compounds: The Slow Link Between Olfactory Perception and Breath Metabolic Response. A Pilot Study on Phenylethyl Alcohol and Vaseline Oil |
title_full | Olfactory Event-Related Potentials and Exhaled Organic Volatile Compounds: The Slow Link Between Olfactory Perception and Breath Metabolic Response. A Pilot Study on Phenylethyl Alcohol and Vaseline Oil |
title_fullStr | Olfactory Event-Related Potentials and Exhaled Organic Volatile Compounds: The Slow Link Between Olfactory Perception and Breath Metabolic Response. A Pilot Study on Phenylethyl Alcohol and Vaseline Oil |
title_full_unstemmed | Olfactory Event-Related Potentials and Exhaled Organic Volatile Compounds: The Slow Link Between Olfactory Perception and Breath Metabolic Response. A Pilot Study on Phenylethyl Alcohol and Vaseline Oil |
title_short | Olfactory Event-Related Potentials and Exhaled Organic Volatile Compounds: The Slow Link Between Olfactory Perception and Breath Metabolic Response. A Pilot Study on Phenylethyl Alcohol and Vaseline Oil |
title_sort | olfactory event-related potentials and exhaled organic volatile compounds: the slow link between olfactory perception and breath metabolic response. a pilot study on phenylethyl alcohol and vaseline oil |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523942/ https://www.ncbi.nlm.nih.gov/pubmed/30991670 http://dx.doi.org/10.3390/brainsci9040084 |
work_keys_str_mv | AT invittosara olfactoryeventrelatedpotentialsandexhaledorganicvolatilecompoundstheslowlinkbetweenolfactoryperceptionandbreathmetabolicresponseapilotstudyonphenylethylalcoholandvaselineoil AT mazzatentaandrea olfactoryeventrelatedpotentialsandexhaledorganicvolatilecompoundstheslowlinkbetweenolfactoryperceptionandbreathmetabolicresponseapilotstudyonphenylethylalcoholandvaselineoil |