Cargando…
NeoMutate: an ensemble machine learning framework for the prediction of somatic mutations in cancer
BACKGROUND: The accurate screening of tumor genomic landscapes for somatic mutations using high-throughput sequencing involves a crucial step in precise clinical diagnosis and targeted therapy. However, the complex inherent features of cancer tissue, especially, tumor genetic intra-heterogeneity cou...
Autores principales: | Anzar, Irantzu, Sverchkova, Angelina, Stratford, Richard, Clancy, Trevor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524241/ https://www.ncbi.nlm.nih.gov/pubmed/31096972 http://dx.doi.org/10.1186/s12920-019-0508-5 |
Ejemplares similares
-
Personalized HLA typing leads to the discovery of novel HLA alleles and tumor‐specific HLA variants
por: Anzar, Irantzu, et al.
Publicado: (2022) -
SMuRF: portable and accurate ensemble prediction of somatic mutations
por: Huang, Weitai, et al.
Publicado: (2019) -
An ensemble approach to accurately detect somatic mutations using SomaticSeq
por: Fang, Li Tai, et al.
Publicado: (2015) -
Classification of Cancer Primary Sites Using Machine Learning and Somatic Mutations
por: Chen, Yukun, et al.
Publicado: (2015) -
Integrating Somatic Mutations for Breast Cancer Survival Prediction Using Machine Learning Methods
por: He, Zongzhen, et al.
Publicado: (2021)