Cargando…
Maslinic acid derived from olive fruit in combination with resistance training improves muscle mass and mobility functions in the elderly
Maslinic acid, derived from olive fruit, reduces pro-inflammation cytokines, which are involved in muscle fiber atrophy. Therefore, the maslinic acid ingestion may enhance the muscular response to resistance training through anti-inflammatory action. We therefore conducted a parallel, double-blind,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
the Society for Free Radical Research Japan
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529705/ https://www.ncbi.nlm.nih.gov/pubmed/31138956 http://dx.doi.org/10.3164/jcbn.18-104 |
Sumario: | Maslinic acid, derived from olive fruit, reduces pro-inflammation cytokines, which are involved in muscle fiber atrophy. Therefore, the maslinic acid ingestion may enhance the muscular response to resistance training through anti-inflammatory action. We therefore conducted a parallel, double-blind, randomized, placebo-controlled trial that examined whether a combination of maslinic acid supplementation and resistance training improve mobility functions in community-dwelling elderly persons. Over a 12-week period, 36 participants underwent moderate resistance training and are assigned to the maslinic acid supplementation (n = 17, 60 mg/day) or the placebo (n = 19) group. At baseline and at 12-weeks, we assessed body composition, grip strength, walking speed, leg strength, mobility functions, and knee pain scores. Following the 12-weeks, skeletal muscle mass, segmental muscle mass (right arm, left arm, and trunk) and knee pain score of the right leg were significantly improved in the maslinic acid group, while there was no change or parameters had worsened in the placebo group. Grip strength of the better side significantly increased only in the maslinic acid group. These results suggest that maslinic acid supplementation combined with moderate resistance training may increase upper muscle mass and grip strength, and reduce knee pain, could be effective for preventing mobility-related disability in elderly persons. Clinical trial registration number: UMIN000017207. |
---|