Cargando…

Actin Dynamics, Regulated by RhoA-LIMK-Cofilin Signaling, Mediates Rod Photoreceptor Axonal Retraction After Retinal Injury

PURPOSE: Retraction of the axon terminals of rod photoreceptors after retinal detachment breaks the first synapse in the visual pathway, resulting in visual impairment. Previous work showed that the mechanism of axonal retraction involves RhoA signaling and its downstream effector LIM Kinase (LIMK)...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Weiwei, Halasz, Eva, Townes-Anderson, Ellen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6530517/
https://www.ncbi.nlm.nih.gov/pubmed/31112612
http://dx.doi.org/10.1167/iovs.18-26077
Descripción
Sumario:PURPOSE: Retraction of the axon terminals of rod photoreceptors after retinal detachment breaks the first synapse in the visual pathway, resulting in visual impairment. Previous work showed that the mechanism of axonal retraction involves RhoA signaling and its downstream effector LIM Kinase (LIMK) activation. We examined the response of the downstream component cofilin, a direct binding protein of actin filaments, as well as the regulation by RhoA-LIMK-Cofilin signaling of actin assembly/disassembly, in the presynaptic ribbon terminal of injured rod cells. METHODS: Injury was produced by retinal detachment or rod cell isolation. Detached porcine retina was probed for levels and localization of phosphorylated cofilin with Western blots and confocal microscopy, whereas rod cell cultures of dissociated salamander retina were examined for filamentous actin assembly/disassembly with a barbed end assay and phalloidin staining. RESULTS: A detachment increased phosphorylation of cofilin in retinal explants; phosphorylation occurred in rod terminals in sections of detached retina. Isolation of rod cells resulted in axon retraction accompanied by an increase in actin barbed ends and a decrease in net filament labeling. All changes were significantly reduced by either Rho kinase (ROCK) or LIMK inhibition, using Y27632 or BMS-5, respectively. Cytochalasin D also reduced retraction and stabilized filaments in isolated rod cells. CONCLUSIONS: These results indicate that actin depolymerization via activation of RhoA downstream kinases and cofilin contributes to axon retraction. Preventing depolymerization, in addition to actomyosin contraction, may stabilize ribbon synapses after trauma.