Cargando…

Level of neo-epitope predecessor and mutation type determine T cell activation of MHC binding peptides

BACKGROUND: Targeting epitopes derived from neo-antigens (or “neo-epitopes”) represents a promising immunotherapy approach with limited off-target effects. However, most peptides predicted using MHC binding prediction algorithms do not induce a CD8 + T cell response, and there is a crucial need to r...

Descripción completa

Detalles Bibliográficos
Autores principales: Besser, Hanan, Yunger, Sharon, Merhavi-Shoham, Efrat, Cohen, Cyrille J., Louzoun, Yoram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532181/
https://www.ncbi.nlm.nih.gov/pubmed/31118084
http://dx.doi.org/10.1186/s40425-019-0595-z
Descripción
Sumario:BACKGROUND: Targeting epitopes derived from neo-antigens (or “neo-epitopes”) represents a promising immunotherapy approach with limited off-target effects. However, most peptides predicted using MHC binding prediction algorithms do not induce a CD8 + T cell response, and there is a crucial need to refine the predictions to readily identify the best antigens that could mediate T-cell responses. Such a response requires a high enough number of epitopes bound to the target MHC. This number is correlated with both the peptide-MHC binding affinity and the number of peptides reaching the ER. Beyond this, the response may be affected by the properties of the neo-epitope mutated residues. METHODS: Herein, we analyzed several experimental datasets from cancer patients to elaborate better predictive algorithms for T-cell reactivity to neo-epitopes. RESULTS: Indeed, potent classifiers for epitopes derived from neo-antigens in melanoma and other tumors can be developed based on biochemical properties of the mutated residue, the antigen expression level and the peptide processing stage. Among MHC binding peptides, the present classifiers can remove half of the peptides falsely predicted to activate T cells while maintaining the absolute majority of reactive peptides. CONCLUSIONS: The classifier properties further highlight the contribution of the quantity of peptides reaching the ER and the mutation type to CD8 + T cell responses. These classifiers were then validated on neo-antigens obtained from other datasets, confirming the validity of our prediction. Algorithm Availability: http://peptibase.cs.biu.ac.il/Tcell_predictor/ or by request from the authors as a standalone code.