Cargando…
Inhibition of RNA polymerase III transcription by Triptolide attenuates colorectal tumorigenesis
BACKGROUND: Upregulation of RNA polymerase (Pol) III products, including tRNAs and 5S rRNA, in tumor cells leads to enhanced protein synthesis and tumor formation, making it a potential target for cancer treatment. In this study, we evaluated the inhibition of Pol III transcription by triptolide and...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533717/ https://www.ncbi.nlm.nih.gov/pubmed/31122284 http://dx.doi.org/10.1186/s13046-019-1232-x |
_version_ | 1783421267278299136 |
---|---|
author | Liang, Xia Xie, Renxiang Su, Jinfeng Ye, Bingqi Wei, Saisai Liang, Zhibing Bai, Rongpan Chen, Zhanghui Li, Zhongxiang Gao, Xiangwei |
author_facet | Liang, Xia Xie, Renxiang Su, Jinfeng Ye, Bingqi Wei, Saisai Liang, Zhibing Bai, Rongpan Chen, Zhanghui Li, Zhongxiang Gao, Xiangwei |
author_sort | Liang, Xia |
collection | PubMed |
description | BACKGROUND: Upregulation of RNA polymerase (Pol) III products, including tRNAs and 5S rRNA, in tumor cells leads to enhanced protein synthesis and tumor formation, making it a potential target for cancer treatment. In this study, we evaluated the inhibition of Pol III transcription by triptolide and the anti-cancer effect of this drug in colorectal tumorigenesis. METHODS: The effect of triptolide on colorectal cancer development was assessed in colorectal cancer mouse models, 3D organoids, and cultured cells. Colorectal cancer cells were treated with triptolide. Pol III transcription was measured by real-time quantitative polymerase chain reaction (PCR). The formation of TFIIIB, a multi-subunit transcription factor for Pol III, was determined by chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP), and fluorescence resonance energy transfer (FRET). RESULTS: Triptolide reduced both tumor number and tumor size in adenomatous polyposis coli (Apc) mutated (Apc(Min/+)) mice as well as AOM/DSS-induced mice. Moreover, triptolide effectively inhibited colorectal cancer cell proliferation, colony formation, and organoid growth in vitro, which was associated with decreased Pol III target genes. Mechanistically, triptolide treatment blocked TBP/Brf1interaction, leading to the reduced formation of TFIIIB at the promoters of tRNAs and 5S rRNA. CONCLUSIONS: Together, our data suggest that inhibition of Pol III transcription with existing drugs such as triptolide provides a new avenue for developing novel therapies for colorectal cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1232-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6533717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65337172019-05-28 Inhibition of RNA polymerase III transcription by Triptolide attenuates colorectal tumorigenesis Liang, Xia Xie, Renxiang Su, Jinfeng Ye, Bingqi Wei, Saisai Liang, Zhibing Bai, Rongpan Chen, Zhanghui Li, Zhongxiang Gao, Xiangwei J Exp Clin Cancer Res Research BACKGROUND: Upregulation of RNA polymerase (Pol) III products, including tRNAs and 5S rRNA, in tumor cells leads to enhanced protein synthesis and tumor formation, making it a potential target for cancer treatment. In this study, we evaluated the inhibition of Pol III transcription by triptolide and the anti-cancer effect of this drug in colorectal tumorigenesis. METHODS: The effect of triptolide on colorectal cancer development was assessed in colorectal cancer mouse models, 3D organoids, and cultured cells. Colorectal cancer cells were treated with triptolide. Pol III transcription was measured by real-time quantitative polymerase chain reaction (PCR). The formation of TFIIIB, a multi-subunit transcription factor for Pol III, was determined by chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP), and fluorescence resonance energy transfer (FRET). RESULTS: Triptolide reduced both tumor number and tumor size in adenomatous polyposis coli (Apc) mutated (Apc(Min/+)) mice as well as AOM/DSS-induced mice. Moreover, triptolide effectively inhibited colorectal cancer cell proliferation, colony formation, and organoid growth in vitro, which was associated with decreased Pol III target genes. Mechanistically, triptolide treatment blocked TBP/Brf1interaction, leading to the reduced formation of TFIIIB at the promoters of tRNAs and 5S rRNA. CONCLUSIONS: Together, our data suggest that inhibition of Pol III transcription with existing drugs such as triptolide provides a new avenue for developing novel therapies for colorectal cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1232-x) contains supplementary material, which is available to authorized users. BioMed Central 2019-05-23 /pmc/articles/PMC6533717/ /pubmed/31122284 http://dx.doi.org/10.1186/s13046-019-1232-x Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Liang, Xia Xie, Renxiang Su, Jinfeng Ye, Bingqi Wei, Saisai Liang, Zhibing Bai, Rongpan Chen, Zhanghui Li, Zhongxiang Gao, Xiangwei Inhibition of RNA polymerase III transcription by Triptolide attenuates colorectal tumorigenesis |
title | Inhibition of RNA polymerase III transcription by Triptolide attenuates colorectal tumorigenesis |
title_full | Inhibition of RNA polymerase III transcription by Triptolide attenuates colorectal tumorigenesis |
title_fullStr | Inhibition of RNA polymerase III transcription by Triptolide attenuates colorectal tumorigenesis |
title_full_unstemmed | Inhibition of RNA polymerase III transcription by Triptolide attenuates colorectal tumorigenesis |
title_short | Inhibition of RNA polymerase III transcription by Triptolide attenuates colorectal tumorigenesis |
title_sort | inhibition of rna polymerase iii transcription by triptolide attenuates colorectal tumorigenesis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533717/ https://www.ncbi.nlm.nih.gov/pubmed/31122284 http://dx.doi.org/10.1186/s13046-019-1232-x |
work_keys_str_mv | AT liangxia inhibitionofrnapolymeraseiiitranscriptionbytriptolideattenuatescolorectaltumorigenesis AT xierenxiang inhibitionofrnapolymeraseiiitranscriptionbytriptolideattenuatescolorectaltumorigenesis AT sujinfeng inhibitionofrnapolymeraseiiitranscriptionbytriptolideattenuatescolorectaltumorigenesis AT yebingqi inhibitionofrnapolymeraseiiitranscriptionbytriptolideattenuatescolorectaltumorigenesis AT weisaisai inhibitionofrnapolymeraseiiitranscriptionbytriptolideattenuatescolorectaltumorigenesis AT liangzhibing inhibitionofrnapolymeraseiiitranscriptionbytriptolideattenuatescolorectaltumorigenesis AT bairongpan inhibitionofrnapolymeraseiiitranscriptionbytriptolideattenuatescolorectaltumorigenesis AT chenzhanghui inhibitionofrnapolymeraseiiitranscriptionbytriptolideattenuatescolorectaltumorigenesis AT lizhongxiang inhibitionofrnapolymeraseiiitranscriptionbytriptolideattenuatescolorectaltumorigenesis AT gaoxiangwei inhibitionofrnapolymeraseiiitranscriptionbytriptolideattenuatescolorectaltumorigenesis |