Cargando…
Learning Causal Biological Networks With the Principle of Mendelian Randomization
Although large amounts of genomic data are available, it remains a challenge to reliably infer causal (i. e., regulatory) relationships among molecular phenotypes (such as gene expression), especially when multiple phenotypes are involved. We extend the interpretation of the Principle of Mendelian r...
Autores principales: | Badsha, Md. Bahadur, Fu, Audrey Qiuyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536645/ https://www.ncbi.nlm.nih.gov/pubmed/31164902 http://dx.doi.org/10.3389/fgene.2019.00460 |
Ejemplares similares
-
MRPC: An R Package for Inference of Causal Graphs
por: Badsha, Md. Bahadur, et al.
Publicado: (2021) -
From classical mendelian randomization to causal networks for systematic integration of multi-omics
por: Yazdani, Azam, et al.
Publicado: (2022) -
Causal Associations of Urate With Cardiovascular Risk Factors: Two-Sample Mendelian Randomization
por: Lukkunaprasit, Thitiya, et al.
Publicado: (2021) -
Mendelian Randomization Identifies the Potential Causal Impact of Dietary Patterns on Circulating Blood Metabolites
por: Taba, Nele, et al.
Publicado: (2021) -
Mendelian Randomization in Stroke: A Powerful Approach to Causal Inference and Drug Target Validation
por: Acosta, Julián N., et al.
Publicado: (2021)