Cargando…

Computational determination of hERG-related cardiotoxicity of drug candidates

BACKGROUND: Drug candidates often cause an unwanted blockage of the potassium ion channel of the human ether-a-go-go-related gene (hERG). The blockage leads to long QT syndrome (LQTS), which is a severe life-threatening cardiac side effect. Therefore, a virtual screening method to predict drug-induc...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hyang-Mi, Yu, Myeong-Sang, Kazmi, Sayada Reemsha, Oh, Seong Yun, Rhee, Ki-Hyeong, Bae, Myung-Ae, Lee, Byung Ho, Shin, Dae-Seop, Oh, Kwang-Seok, Ceong, Hyithaek, Lee, Donghyun, Na, Dokyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538553/
https://www.ncbi.nlm.nih.gov/pubmed/31138104
http://dx.doi.org/10.1186/s12859-019-2814-5
Descripción
Sumario:BACKGROUND: Drug candidates often cause an unwanted blockage of the potassium ion channel of the human ether-a-go-go-related gene (hERG). The blockage leads to long QT syndrome (LQTS), which is a severe life-threatening cardiac side effect. Therefore, a virtual screening method to predict drug-induced hERG-related cardiotoxicity could facilitate drug discovery by filtering out toxic drug candidates. RESULT: In this study, we generated a reliable hERG-related cardiotoxicity dataset composed of 2130 compounds, which were carried out under constant conditions. Based on our dataset, we developed a computational hERG-related cardiotoxicity prediction model. The neural network model achieved an area under the receiver operating characteristic curve (AUC) of 0.764, with an accuracy of 90.1%, a Matthews correlation coefficient (MCC) of 0.368, a sensitivity of 0.321, and a specificity of 0.967, when ten-fold cross-validation was performed. The model was further evaluated using ten drug compounds tested on guinea pigs and showed an accuracy of 80.0%, an MCC of 0.655, a sensitivity of 0.600, and a specificity of 1.000, which were better than the performances of existing hERG-toxicity prediction models. CONCLUSION: The neural network model can predict hERG-related cardiotoxicity of chemical compounds with a high accuracy. Therefore, the model can be applied to virtual high-throughput screening for drug candidates that do not cause cardiotoxicity. The prediction tool is available as a web-tool at http://ssbio.cau.ac.kr/CardPred.