Cargando…
Classifying Image Stacks of Specular Silicon Wafer Back Surface Regions: Performance Comparison of CNNs and SVMs
In this work, we compare the performance of convolutional neural networks and support vector machines for classifying image stacks of specular silicon wafer back surfaces. In these image stacks, we can identify structures typically originating from replicas of chip structures or from grinding artifa...
Autores principales: | Kofler, Corinna, Muhr, Robert, Spöck, Gunter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539889/ https://www.ncbi.nlm.nih.gov/pubmed/31052579 http://dx.doi.org/10.3390/s19092056 |
Ejemplares similares
-
Distributed optimization of multi-class SVMs
por: Alber, Maximilian, et al.
Publicado: (2017) -
Learning Interpretable SVMs for Biological Sequence Classification
por: Rätsch, Gunnar, et al.
Publicado: (2006) -
Nature inspired optimization tools for SVMs - NIOTS
por: Santos, Carlos Eduardo da Silva, et al.
Publicado: (2021) -
Specular Detection on Glossy Surface Using Geometric Characteristics of Specularity in Top-View Images
por: Kim, Seunghyun, et al.
Publicado: (2021) -
Robust Grape Detector Based on SVMs and HOG Features
por: Škrabánek, Pavel, et al.
Publicado: (2017)