Cargando…

Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology

In this paper, a portable electronic nose, that was independently developed, was employed to detect and classify a fish meal of different qualities. SPME-GC-MS (solid phase microextraction gas chromatography mass spectrometry) analysis of fish meal was presented. Due to the large amount of data of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Pei, Ren, Zouhong, Shao, Kaiyi, Tan, Hequn, Niu, Zhiyou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540599/
https://www.ncbi.nlm.nih.gov/pubmed/31075849
http://dx.doi.org/10.3390/s19092146
_version_ 1783422656661422080
author Li, Pei
Ren, Zouhong
Shao, Kaiyi
Tan, Hequn
Niu, Zhiyou
author_facet Li, Pei
Ren, Zouhong
Shao, Kaiyi
Tan, Hequn
Niu, Zhiyou
author_sort Li, Pei
collection PubMed
description In this paper, a portable electronic nose, that was independently developed, was employed to detect and classify a fish meal of different qualities. SPME-GC-MS (solid phase microextraction gas chromatography mass spectrometry) analysis of fish meal was presented. Due to the large amount of data of the original features detected by the electronic nose, a reasonable selection of the original features was necessary before processing, so as to reduce the dimension. The integral value, wavelet energy value, maximum gradient value, average differential value, relation steady-state response average value and variance value were selected as six different characteristic parameters, to study fish meal samples with different storage time grades. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), and five recognition modes, which included the multilayer perceptron neural network classification method, random forest classification method, k nearest neighbor algorithm, support vector machine algorithm, and Bayesian classification method, were employed for the classification. The result showed that the RF classification method had the highest accuracy rate for the classification algorithm. The highest accuracy rate for distinguishing fish meal samples with different qualities was achieved using the integral value, stable value, and average differential value. The lowest accuracy rate for distinguishing fish meal samples with different qualities was achieved using the maximum gradient value. This finding shows that the electronic nose can identify fish meal samples with different storage times.
format Online
Article
Text
id pubmed-6540599
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-65405992019-06-04 Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology Li, Pei Ren, Zouhong Shao, Kaiyi Tan, Hequn Niu, Zhiyou Sensors (Basel) Article In this paper, a portable electronic nose, that was independently developed, was employed to detect and classify a fish meal of different qualities. SPME-GC-MS (solid phase microextraction gas chromatography mass spectrometry) analysis of fish meal was presented. Due to the large amount of data of the original features detected by the electronic nose, a reasonable selection of the original features was necessary before processing, so as to reduce the dimension. The integral value, wavelet energy value, maximum gradient value, average differential value, relation steady-state response average value and variance value were selected as six different characteristic parameters, to study fish meal samples with different storage time grades. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), and five recognition modes, which included the multilayer perceptron neural network classification method, random forest classification method, k nearest neighbor algorithm, support vector machine algorithm, and Bayesian classification method, were employed for the classification. The result showed that the RF classification method had the highest accuracy rate for the classification algorithm. The highest accuracy rate for distinguishing fish meal samples with different qualities was achieved using the integral value, stable value, and average differential value. The lowest accuracy rate for distinguishing fish meal samples with different qualities was achieved using the maximum gradient value. This finding shows that the electronic nose can identify fish meal samples with different storage times. MDPI 2019-05-09 /pmc/articles/PMC6540599/ /pubmed/31075849 http://dx.doi.org/10.3390/s19092146 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Li, Pei
Ren, Zouhong
Shao, Kaiyi
Tan, Hequn
Niu, Zhiyou
Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology
title Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology
title_full Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology
title_fullStr Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology
title_full_unstemmed Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology
title_short Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology
title_sort research on distinguishing fish meal quality using different characteristic parameters based on electronic nose technology
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6540599/
https://www.ncbi.nlm.nih.gov/pubmed/31075849
http://dx.doi.org/10.3390/s19092146
work_keys_str_mv AT lipei researchondistinguishingfishmealqualityusingdifferentcharacteristicparametersbasedonelectronicnosetechnology
AT renzouhong researchondistinguishingfishmealqualityusingdifferentcharacteristicparametersbasedonelectronicnosetechnology
AT shaokaiyi researchondistinguishingfishmealqualityusingdifferentcharacteristicparametersbasedonelectronicnosetechnology
AT tanhequn researchondistinguishingfishmealqualityusingdifferentcharacteristicparametersbasedonelectronicnosetechnology
AT niuzhiyou researchondistinguishingfishmealqualityusingdifferentcharacteristicparametersbasedonelectronicnosetechnology