Cargando…

Immunocapture of virions with virus-specific antibodies prior to high-throughput sequencing effectively enriches for virus-specific sequences

Virus discovery based on high-throughput sequencing relies on enrichment for virus sequences prior to library preparation to achieve a sufficient number of viral reads. In general, preparations of double-stranded RNA or total RNA preparations treated to remove rRNA are used for sequence enrichment....

Descripción completa

Detalles Bibliográficos
Autores principales: Knierim, Dennis, Menzel, Wulf, Winter, Stephan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542260/
https://www.ncbi.nlm.nih.gov/pubmed/31071169
http://dx.doi.org/10.1371/journal.pone.0216713
Descripción
Sumario:Virus discovery based on high-throughput sequencing relies on enrichment for virus sequences prior to library preparation to achieve a sufficient number of viral reads. In general, preparations of double-stranded RNA or total RNA preparations treated to remove rRNA are used for sequence enrichment. We used virus-specific antibodies to immunocapture virions from plant sap to conduct cDNA synthesis, followed by library preparation and HTS. For the four potato viruses PLRV, PVY, PVA and PYV, template preparation by virion immunocapture provided a simpler and less expensive method than the enrichment of total RNA by ribosomal depletion. Specific enrichment of viral sequences without an intermediate amplification step was achieved, and this high coverage of sequences across the viral genomes was important to identify rare sequence variations. Using this approach, the first complete genome sequence of a potato yellowing virus isolate (PYV, DSMZ PV-0706) was determined in this study. PYV can be confidently assigned as a distinct species in the genus Ilarvirus.