Cargando…

Transglycosylation products generated by Talaromyces amestolkiae GH3 β-glucosidases: effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells

BACKGROUND: Transglycosylation represents one of the most promising approaches for obtaining novel glycosides, and plant phenols and polyphenols are emerging as one of the best targets for creating new molecules with enhanced capacities. These compounds can be found in diet and exhibit a wide range...

Descripción completa

Detalles Bibliográficos
Autores principales: Méndez-Líter, Juan Antonio, Tundidor, Isabel, Nieto-Domínguez, Manuel, de Toro, Beatriz Fernández, González Santana, Andrés, de Eugenio, Laura Isabel, Prieto, Alicia, Asensio, Juan Luis, Cañada, Francisco Javier, Sánchez, Cristina, Martínez, María Jesús
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544938/
https://www.ncbi.nlm.nih.gov/pubmed/31151435
http://dx.doi.org/10.1186/s12934-019-1147-4
Descripción
Sumario:BACKGROUND: Transglycosylation represents one of the most promising approaches for obtaining novel glycosides, and plant phenols and polyphenols are emerging as one of the best targets for creating new molecules with enhanced capacities. These compounds can be found in diet and exhibit a wide range of bioactivities, such as antioxidant, antihypertensive, antitumor, neuroprotective and anti-inflammatory, and the eco-friendly synthesis of glycosides from these molecules can be a suitable alternative for increasing their health benefits. RESULTS: Transglycosylation experiments were carried out using different GH3 β-glucosidases from the fungus Talaromyces amestolkiae. After a first screening with a wide variety of potential transglycosylation acceptors, mono-glucosylated derivatives of hydroxytyrosol, vanillin alcohol, 4-hydroxybenzyl alcohol, and hydroquinone were detected. The reaction products were analyzed by thin-layer chromatography, high-pressure liquid chromatography, and mass spectrometry. Hydroxytyrosol and vanillyl alcohol were selected as the best options for transglycosylation optimization, with a final conversion yield of 13.8 and 19% of hydroxytyrosol and vanillin glucosides, respectively. NMR analysis confirmed the structures of these compounds. The evaluation of the biological effect of these glucosides using models of breast cancer cells, showed an enhancement in the anti-proliferative capacity of the vanillin derivative, and an improved safety profile of both glucosides. CONCLUSIONS: GH3 β-glucosidases from T. amestolkiae expressed in P. pastoris were able to transglycosylate a wide variety of acceptors. Between them, phenolic molecules like hydroxytyrosol, vanillin alcohol, 4-hydroxybenzyl alcohol, and hydroquinone were the most suitable for its interesting biological properties. The glycosides of hydroxytyrosol and vanillin were tested, and they improved the biological activities of the original aglycons on breast cancer cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12934-019-1147-4) contains supplementary material, which is available to authorized users.